首先,可以设置scan的startRow, stopRow, filter等属性。于是两种方案:
1.设置scan的filter,然后执行mapper,再reducer成一份结果
2.不用filter过滤,将filter做的事传给mapper做
进行了测试,前者在执行较少量scan记录的时候效率较后者高,但是执行的scan数量多了,便容易导致超时无返回而退出的情况。而为了实现后者,学会了如何向mapper任务中传递参数,走了一点弯路。
最后的一点思考是,用后者效率仍然不高,即便可用前者时效率也不高,因为默认的tablemapper是将对一个region的scan任务放在了一个mapper里,而我一个region有2G多,而我查的数据只占七八个region。于是,想能不能不以region为单位算做mapper,如果不能改,那只有用MR直接操作HBase底层HDFS文件了,这个,…,待研究。
上代码(为了保密,将表名啊,列名列族名啊都改了一下,有改漏的,大家当做没看见啊,另:主要供大家参考下方法,即用mr来查询海量hbase数据,还有如何向mapper传参数):
package mapreduce.hbase; import java.io.IOException; import mapreduce.HDFS_File; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.filter.FilterList; import org.apache.hadoop.hbase.filter.SingleColumnValueFilter; import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper.Context; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 用MR对HBase进行查找,给出Scan的条件诸如startkey endkey;以及filters用来过滤掉不符合条件的记录 LicenseTable * 的 RowKey 201101010000000095\xE5\xAE\x81WDTLBZ * * @author Wallace * */ @SuppressWarnings("unused") public class MRSearchAuto { private static final Log LOG = LogFactory.getLog(MRSearchAuto.class); private static String TABLE_NAME = "tablename"; private static byte[] FAMILY_NAME = Bytes.toBytes("cfname"); private static byte[][] QUALIFIER_NAME = { Bytes.toBytes("col1"), Bytes.toBytes("col2"), Bytes.toBytes("col3") }; public static class SearchMapper extends TableMapper<ImmutableBytesWritable, Text> { private int numOfFilter = 0; private Text word = new Text(); String[] strConditionStrings = new String[]{"","",""}/* { "新C87310", "10", "2" } */; /* * private void init(Configuration conf) throws IOException, * InterruptedException { strConditionStrings[0] = * conf.get("search.license").trim(); strConditionStrings[1] = * conf.get("search.carColor").trim(); strConditionStrings[2] = * conf.get("search.direction").trim(); LOG.info("license: " + * strConditionStrings[0]); } */ protected void setup(Context context) throws IOException, InterruptedException { strConditionStrings[0] = context.getConfiguration().get("search.license").trim(); strConditionStrings[1] = context.getConfiguration().get("search.color").trim(); strConditionStrings[2] = context.getConfiguration().get("search.direction").trim(); } protected void map(ImmutableBytesWritable key, Result value, Context context) throws InterruptedException, IOException { String string = ""; String tempString; /**/ for (int i = 0; i < 1; i++) { // /在此map里进行filter的功能 tempString = Text.decode(value.getValue(FAMILY_NAME, QUALIFIER_NAME[i])); if (tempString.equals(/* strConditionStrings[i] */"新C87310")) { LOG.info("新C87310. conf: " + strConditionStrings[0]); if (tempString.equals(strConditionStrings[i])) { string = string + tempString + " "; } else { return; } } else { return; } } word.set(string); context.write(null, word); } } public void searchHBase(int numOfDays) throws IOException, InterruptedException, ClassNotFoundException { long startTime; long endTime; Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "node2,node3,node4"); conf.set("fs.default.name", "hdfs://node1"); conf.set("mapred.job.tracker", "node1:54311"); /* * 传递参数给map */ conf.set("search.license", "新C87310"); conf.set("search.color", "10"); conf.set("search.direction", "2"); Job job = new Job(conf, "MRSearchHBase"); System.out.println("search.license: " + conf.get("search.license")); job.setNumReduceTasks(0); job.setJarByClass(MRSearchAuto.class); Scan scan = new Scan(); scan.addFamily(FAMILY_NAME); byte[] startRow = Bytes.toBytes("2011010100000"); byte[] stopRow; switch (numOfDays) { case 1: stopRow = Bytes.toBytes("2011010200000"); break; case 10: stopRow = Bytes.toBytes("2011011100000"); break; case 30: stopRow = Bytes.toBytes("2011020100000"); break; case 365: stopRow = Bytes.toBytes("2012010100000"); break; default: stopRow = Bytes.toBytes("2011010101000"); } // 设置开始和结束key scan.setStartRow(startRow); scan.setStopRow(stopRow); TableMapReduceUtil.initTableMapperJob(TABLE_NAME, scan, SearchMapper.class, ImmutableBytesWritable.class, Text.class, job); Path outPath = new Path("searchresult"); HDFS_File file = new HDFS_File(); file.DelFile(conf, outPath.getName(), true); // 若已存在,则先删除 FileOutputFormat.setOutputPath(job, outPath);// 输出结果 startTime = System.currentTimeMillis(); job.waitForCompletion(true); endTime = System.currentTimeMillis(); System.out.println("Time used: " + (endTime - startTime)); System.out.println("startRow:" + Text.decode(startRow)); System.out.println("stopRow: " + Text.decode(stopRow)); } public static void main(String args[]) throws IOException, InterruptedException, ClassNotFoundException { MRSearchAuto mrSearchAuto = new MRSearchAuto(); int numOfDays = 1; if (args.length == 1) numOfDays = Integer.valueOf(args[0]); System.out.println("Num of days: " + numOfDays); mrSearchAuto.searchHBase(numOfDays); } }
开始时,我是在外面conf.set了传入的参数,而在mapper的init(Configuration)里get参数并赋给mapper对象。
将参数传给map运行时结果不对
for (int i = 0; i < 1; i++) {
// /在此map里进行filter的功能
tempString = Text.decode(value.getValue(FAMILY_NAME,
QUALIFIER_NAME[i]));
if (tempString.equals(/*strConditionStrings[i]*/"新C87310"))
string = string + tempString + " ";
else {
return;
}
}
如果用下面的mapper的init获取conf传来的参数,然后在上面map函数里进行调用,结果便不对了。
直接指定值时和参数传过来相同的值时,其output的结果分别为1条和0条。
private void init(Configuration conf) throws IOException,
InterruptedException {
strConditionStrings[0] = conf.get("search.licenseNumber").trim();
strConditionStrings[1] = conf.get("search.carColor").trim();
strConditionStrings[2] = conf.get("search.direction").trim();
}
加了个日志写
private static final Log LOG = LogFactory.getLog(MRSearchAuto.class);
init()函数里:
LOG.info("license: " + strConditionStrings[0]);
map里
if (tempString.equals(/* strConditionStrings[i] */"新C87310")) {
LOG.info("新C87310. conf: " + strConditionStrings[0]);
然后在网页 namenode:50030上看任务,最终定位到哪台机器执行了那个map,然后看日志
mapreduce.hbase.TestMRHBase: 新C87310. conf: null
在conf.set之后我也写了下,那时正常,但是在map里却是null了,而在map类的init函数打印的却没有打印。
因此,问题应该是:
map类的init()函数没有执行到!
于是init()的获取conf中参数值并赋给map里变量的操作便未执行,同时打印日志也未执行。
OK!看怎么解决
放在setup里获取
protected void setup(Context context) throws IOException,
InterruptedException {
// strConditionStrings[0] = context.getConfiguration().get("search.license").trim();
// strConditionStrings[1] = context.getConfiguration().get("search.color").trim();
// strConditionStrings[2] = context.getConfiguration().get("search.direction").trim();
}
报错
12/01/12 11:21:56 INFO mapred.JobClient: map 0% reduce 0%
12/01/12 11:22:03 INFO mapred.JobClient: Task Id : attempt_201201100941_0071_m_000000_0, Status : FAILED
java.lang.NullPointerException
at mapreduce.hbase.MRSearchAuto$SearchMapper.setup(MRSearchAuto.java:66)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:142)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:656)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:325)
at org.apache.hadoop.mapred.Child$4.run(Child.java:270)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
at org.apache.hadoop.mapred.Child.main(Child.java:264)
attempt_201201100941_0071_m_000000_0: log4j:WARN No appenders could be found for logger (org.apache.hadoop.hdfs.DFSClient).
attempt_201201100941_0071_m_000000_0: log4j:WARN Please initialize the log4j system properly.
12/01/12 11:22:09 INFO mapred.JobClient: Task Id : attempt_201201100941_0071_m_000000_1, Status : FAILED
java.lang.NullPointerException
at mapreduce.hbase.MRSearchAuto$SearchMapper.setup(MRSearchAuto.java:66)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:142)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:656)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:325)
at org.apache.hadoop.mapred.Child$4.run(Child.java:270)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
at org.apache.hadoop.mapred.Child.main(Child.java:264)
然后将setup里的东西注释掉,无错,错误应该在context上,进一步确认,在里面不用context,直接赋值,有结果,好!
说明是context的事了,NullPointerException,应该是context.getConfiguration().get("search.license")这些中有一个是null的。
突然想起来,改了下get时候的属性,而set时候没改,于是不对应,于是context.getConfiguration().get("search.color")及下面的一项都是null,null.trim()报的异常。
conf.set("search.license", "新C87310");
conf.set("search.color", "10");
conf.set("search.direction", "2");
修改后,问题解决。
实现了向map中传参数