Leetcode N-Queens I

N-Queens 

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

写非递归回溯法要点:
1 记录好是否发生递归状态了
2 递归之后不能重复之前试过的解决方案
本题利用一个vector<int> backtrackCol(n,-1)实现了这两个功能
3 清楚什么时候需要回溯
本题是if (col == n) 这个条件就回溯了
4 回溯,就需要重置填过了的内容
本题需要重置两个数组: vector<int> backtrackCol和board
Iterative算法大概比recurrence算法难度高上三倍吧,而效率并没有明显区别。

下面是非递归算法12 queens用时也是12秒左右,和递归没什么区别。

可以打印的程序在下面连接:
http://blog.csdn.net/kenden23/article/details/14455915

vector<vector<string> > solveNQueens(int n) 
	{
		vector<string> board(n,string(n, '.'));
		vector<vector<string> > rs;
		int row = 0;
		vector<int> backtrackCol(n, -1);
		while (row >= 0)
		{
			int col = 0;
			if (backtrackCol[row] != -1)
			{
				col = backtrackCol[row]+1;
				board[row][col-1] = '.';
			}
			for (; col < n; col++)
			{
				if (isLegal(board, row, col))
				{
					board[row][col] = 'Q';
					backtrackCol[row] = col;
					if (row == n-1) 
					{
						rs.push_back(board);
						backtrackCol[row] = -1;
						board[row][col] = '.';
						row--;
						break;
					}
					row++;
					break;
				}
			}
			if (col == n)
			{
				backtrackCol[row] = -1;
				row--;
			}
		}
		return rs;
	}
	bool isLegal(const vector<string> &board, int row, int col)
	{
		for (int i = 0; i < row; i++)
		{
			if (board[i][col] == 'Q') return false;
		}
		for (int i = row - 1, j = col - 1; i>=0 && j>=0; i--, j--)
		{
			if (board[i][j] == 'Q') return false;
		}
		for (int i = row - 1, j = col + 1; i>=0 && j<board.size(); i--, j++)
		{
			if (board[i][j] == 'Q') return false;
		}
		return true;
	}

下面是递归回溯法,比上面简单多了。

vector<vector<string> > solveNQueens(int n) 
	{
		vector<string> board(n,string(n, '.'));
		vector<vector<string> > rs;
		solNQueens(rs, board);
		return rs;
	}
	void solNQueens(vector<vector<string> > &rs, vector<string> &board, int row=0)
	{
		if (row == board.size()) rs.push_back(board);

		for (int col = 0; col < board.size(); col++)
		{
			if (isLegal(board, row, col))
			{
				board[row][col] = 'Q';
				solNQueens(rs, board, row+1);
				board[row][col] = '.';
			}	
		}
	}

	bool isLegal(const vector<string> &board, int row, int col)
	{
		for (int i = 0; i < row; i++)
		{
			if (board[i][col] == 'Q') return false;
		}
		for (int i = row - 1, j = col - 1; i>=0 && j>=0; i--, j--)
		{
			if (board[i][j] == 'Q') return false;
		}
		for (int i = row - 1, j = col + 1; i>=0 && j<board.size(); i--, j++)
		{
			if (board[i][j] == 'Q') return false;
		}
		return true;
	}


递归回溯:

class Solution128 {
public:
	vector<vector<string> > solveNQueens(int n) 
	{
		vector<vector<string> > rs;
		vector<string> s(n, string(n, '.'));
		solve(rs, s, n);
		return rs;
	}

	void solve(vector<vector<string> > &rs, vector<string> &s, int n, int r = 0)
	{
		if (r == n)
		{
			rs.push_back(s);
			return;
		}

		for (int c = 0; c < n; c++)
		{
			if (isLegal(s, r, c))
			{
				s[r][c] = 'Q';
				solve(rs, s, n, r+1);
				s[r][c] = '.';
			}
		}
	}
	bool isLegal(vector<string> &s, int r, int c)
	{
		for (int i = r - 1, j = c - 1, k = c + 1; i >= 0 ; i--, j--, k++)
		{
			if (s[i][c] == 'Q' 
				|| j>=0 && s[i][j] == 'Q' 
				|| k < s.size() && s[i][k] == 'Q')
				return false;
		}
		return true;
	}
};














你可能感兴趣的:(LeetCode,I,N-Queens)