N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
写非递归回溯法要点:
1 记录好是否发生递归状态了
2 递归之后不能重复之前试过的解决方案
本题利用一个vector<int> backtrackCol(n,-1)实现了这两个功能
3 清楚什么时候需要回溯
本题是if (col == n) 这个条件就回溯了
4 回溯,就需要重置填过了的内容
本题需要重置两个数组: vector<int> backtrackCol和board
Iterative算法大概比recurrence算法难度高上三倍吧,而效率并没有明显区别。
下面是非递归算法12 queens用时也是12秒左右,和递归没什么区别。
可以打印的程序在下面连接:
http://blog.csdn.net/kenden23/article/details/14455915
vector<vector<string> > solveNQueens(int n) { vector<string> board(n,string(n, '.')); vector<vector<string> > rs; int row = 0; vector<int> backtrackCol(n, -1); while (row >= 0) { int col = 0; if (backtrackCol[row] != -1) { col = backtrackCol[row]+1; board[row][col-1] = '.'; } for (; col < n; col++) { if (isLegal(board, row, col)) { board[row][col] = 'Q'; backtrackCol[row] = col; if (row == n-1) { rs.push_back(board); backtrackCol[row] = -1; board[row][col] = '.'; row--; break; } row++; break; } } if (col == n) { backtrackCol[row] = -1; row--; } } return rs; } bool isLegal(const vector<string> &board, int row, int col) { for (int i = 0; i < row; i++) { if (board[i][col] == 'Q') return false; } for (int i = row - 1, j = col - 1; i>=0 && j>=0; i--, j--) { if (board[i][j] == 'Q') return false; } for (int i = row - 1, j = col + 1; i>=0 && j<board.size(); i--, j++) { if (board[i][j] == 'Q') return false; } return true; }
vector<vector<string> > solveNQueens(int n) { vector<string> board(n,string(n, '.')); vector<vector<string> > rs; solNQueens(rs, board); return rs; } void solNQueens(vector<vector<string> > &rs, vector<string> &board, int row=0) { if (row == board.size()) rs.push_back(board); for (int col = 0; col < board.size(); col++) { if (isLegal(board, row, col)) { board[row][col] = 'Q'; solNQueens(rs, board, row+1); board[row][col] = '.'; } } } bool isLegal(const vector<string> &board, int row, int col) { for (int i = 0; i < row; i++) { if (board[i][col] == 'Q') return false; } for (int i = row - 1, j = col - 1; i>=0 && j>=0; i--, j--) { if (board[i][j] == 'Q') return false; } for (int i = row - 1, j = col + 1; i>=0 && j<board.size(); i--, j++) { if (board[i][j] == 'Q') return false; } return true; }
递归回溯:
class Solution128 { public: vector<vector<string> > solveNQueens(int n) { vector<vector<string> > rs; vector<string> s(n, string(n, '.')); solve(rs, s, n); return rs; } void solve(vector<vector<string> > &rs, vector<string> &s, int n, int r = 0) { if (r == n) { rs.push_back(s); return; } for (int c = 0; c < n; c++) { if (isLegal(s, r, c)) { s[r][c] = 'Q'; solve(rs, s, n, r+1); s[r][c] = '.'; } } } bool isLegal(vector<string> &s, int r, int c) { for (int i = r - 1, j = c - 1, k = c + 1; i >= 0 ; i--, j--, k++) { if (s[i][c] == 'Q' || j>=0 && s[i][j] == 'Q' || k < s.size() && s[i][k] == 'Q') return false; } return true; } };