本文转自:http://m.blog.csdn.net/blog/whiteinblue/37808623
一:引言
因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。在训练bp网络时经常遇到的一个问题,过拟合指的是模型在训练数据上损失函数比较小,预测准确率较高(如果通过画图来表示的话,就是拟合曲线比较尖,不平滑,泛化能力不好),但是在测试数据上损失函数比较大,预测准确率较低。
常用的防治过拟合的方法是在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。因此在添加权值惩罚项后,应用梯度下降算法迭代优化计算时,如果参数theta比较大,则此时的正则项数值也比较大,那么在下一次更新参数时,参数削减的也比较大。可以使拟合结果看起来更平滑,不至于过拟合。
Dropout是hintion最近2年提出的;为了防止模型过拟合,Dropout可以作为一种trikc供选择。在hinton的论文摘要中指出,在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。
二 Dropout方法
训练阶段:
1.Dropout是在标准的bp网络的的结构上,使bp网的隐层激活值,以一定的比例v变为0,即按照一定比例v,随机地让一部分隐层节点失效;在后面benchmark实验测试时,部分实验让隐层节点失效的基础上,使输入数据也以一定比例(试验用20%)是部分输入数据失效(这个有点像denoising autoencoder),这样得到了更好的结果。
2.去掉权值惩罚项,取而代之的事,限制权值的范围,给每个权值设置一个上限范围;如果在训练跟新的过程中,权值超过了这个上限,则把权值设置为这个上限的值(这个上限值得设定作者并没有说设置多少最好,后面的试验中作者说这个上限设置为15时,最好;为啥?估计是交叉验证得出的实验结论)。
这样处理,不论权值更新量有多大,权值都不会过大。此外,还可以使算法使用一个比较大的学习率,来加快学习速度,从而使算法在一个更广阔的权值空间中搜索更好的权值,而不用担心权值过大。
测试阶段:
在网络前向传播到输出层前时隐含层节点的输出值都要缩减到(1-v)倍;例如正常的隐层输出为a,此时需要缩减为a(1-v)。
这里我的解释是:假设比例v=0.5,即在训练阶段,以0.5的比例忽略隐层节点;那么假设隐层有80个节点,每个节点输出值为1,那么此时只有40个节点正常工作;也就是说总的输出为40个1和40个0;输出总和为40;而在测试阶段,由于我们的权值已经训练完成,此时就不在按照0.5的比例忽略隐层输出,假设此时每个隐层的输出还是1,那么此时总的输出为80个1,明显比dropout训练时输出大一倍(由于dropout比例为0.5);所以为了得到和训练时一样的输出结果,就缩减隐层输出为a(1-v);即此时输出80个0.5,总和也为40.这样就使得测试阶段和训练阶段的输出“一致”了。(个人见解)
三 Dropout原理分析
Dropout可以看做是一种模型平均,所谓模型平均,顾名思义,就是把来自不同模型的估计或者预测通过一定的权重平均起来,在一些文献中也称为模型组合,它一般包括组合估计和组合预测。
Dropout中哪里体现了“不同模型”;这个奥秘就是我们随机选择忽略隐层节点,在每个批次的训练过程中,由于每次随机忽略的隐层节点都不同,这样就使每次训练的网络都是不一样的,每次训练都可以单做一个“新”的模型;此外,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。
这样dropout过程就是一个非常有效的神经网络模型平均方法,通过训练大量的不同的网络,来平均预测概率。不同的模型在不同的训练集上训练(每个批次的训练数据都是随机选择),最后在每个模型用相同的权重来“融合”,介个有点类似boosting算法。
四 代码详解
首先先介绍一个基于matlab deeplearning toolbox版本的dropout代码,主要参考(tornadomeet大牛博客),如果了解DenoisingAutoencoder的训练过程,则这个dropout的训练过程如出一辙;不需要怎么修改,就可以直接运行,因为在toolbox中已经修改完成了。
这个过程比较简单,而且也没有使用L2规则项,来限制权值的范围;主要是用于理解dropout网络,在训练样本比较少的情况下,dropout可以很好的防止网络过拟合。
训练步骤:
1.提取数据(只提取2000个训练样本)
2 初始化网络结构:这里主要利用nnsetup函数构建一个[784 100 10]的网络。由于是练习用途,所以不进行pre_training。
3 采用minibatch方法,设置dropout比例nn.dropoutFraction=0.5;利用nntrain函数训练网络。
按比例随机忽略隐层节点:
if(nn.dropoutFraction > 0)
if(nn.testing)%测试阶段实现mean network,详见上篇博文
nn.a{i} = nn.a{i}.*(1 - nn.dropoutFraction);
else%训练阶段使用
nn.dropOutMask{i} =(rand(size(nn.a{i}))>nn.dropoutFraction);
nn.a{i} =nn.a{i}.*nn.dropOutMask{i};
end
end
a=rand(1,6)
temp=(rand(size(a))>0.5)
dropout_a=a.*temp
结果:
隐层值
0.1576
0.9706
0.9572
0.4854
0.8003
0.1419
随机选择
1
0
1
0
1
0
结果
0.1576
0
0.9572
0
0.8003
0
隐层值按照比例变为0.
误差delta反向传播实现:
% delta(i)=delta(i+1)W(i)*a(i)(1-a(i)) ;之后再进行dropout
if(nn.dropoutFraction>0)
d{i} = d{i} .* [ones(size(d{i},1),1) nn.dropOutMask{i}];
end
权值更新值delta_w实现:
% delta_w(i)=delta(i+1)*a(i)
for i = 1 : (n - 1)
if i+1==n
nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1);
else
nn.dW{i} = (d{i + 1}(:,2:end)’ * nn.a{i}) / size(d{i + 1}, 1);
end
end
测试样本错误率:15.500% without dropout
测试样本错误率:12.100% with dropout
参考文献:
http://www.cnblogs.com/tornadomeet/p/3258122.html