原题连接:http://acm.hdu.edu.cn/showproblem.php?pid=1269
题意:~~~~~;
思路:就是判断图是否是 强连通图;
[有向图强连通分量]
在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介绍,首先介绍Tarjan算法
[Tarjan算法]
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
算法伪代码如下
tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。
返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
AC 代码:
#include<stdio.h> #include<string.h> #include<vector> using namespace std; const int Max=11000; #define min(a,b) a>b?b:a int n,m,top,index; int instack[Max],stack[Max],loop[Max]; int DFN[Max],LOW[Max],ans; vector<int> V[Max]; void init() { top=ans=0; index=1; int i; for(i=0;i<Max;i++) { V[i].clear(); loop[i]=0; instack[i]=0; } } void tarjan(int u) { int i,j,v; LOW[u]=DFN[u]=index++; stack[top++]=u; loop[u]=1; instack[u]=1; for(i=0;i<V[u].size();i++) { v=V[u][i]; if(loop[v]==0) { tarjan(v); LOW[u]= min(LOW[u],LOW[v]); } else if(instack[v]) LOW[u]= min(LOW[u],DFN[v]); } if(DFN[u]==LOW[u]) { do{ j=stack[top-1]; instack[i]=0; top--; }while(j!=u); ans++; } } int main() { int i,j,x,y; while(~scanf("%d%d",&n,&m)&&n+m) { init(); for(i=1;i<=m;i++) { scanf("%d%d",&x,&y); V[x].push_back(y); } for(i=1;i<=n;i++) if(loop[i]==0) tarjan(i); if(ans==1||n==1) printf("Yes\n"); else printf("No\n"); } }