OpenCV - Mat、CvMat、IplImage类型浅析

 

OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage。

 一、Mat类型:矩阵类型,Matrix。

       在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。

       Mat有3个重要的方法:

         1、Mat mat = imread(const String* filename);            读取图像

         2、imshow(const string frameName, InputArray mat);      显示图像

         3、imwrite (const string& filename, InputArray img);    储存图像

       Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。

二、CvMat类型与IplImage类型:“图像”类型

       在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是:

 1)Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。

2)CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。

       我们知道openCV是完全用C实现的,但是,IplImage类型与CvMat类型的关系就像是java(C++?)中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。

   关于CvMat:

其定义如下:

typedef struct CvMat
{
    int type;
    int step;

    /* for internal use only */
    int* refcount;
    int hdr_refcount;

    union
    {
        uchar* ptr;
        short* s;
        int* i;
        float* fl;
        double* db;
    } data;

#ifdef __cplusplus
    union
    {
        int rows;
        int height;
    };

    union
    {
        int cols;
        int width;
    };
#else
    int rows;
    int cols;
#endif

}
CvMat;

在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:

        CvMat* cvCreatMat(int rows ,int cols , int type);

这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。 

关于IplImage:

在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。

其定义如下:

typedef struct _IplImage
{
    int  nSize;             /* sizeof(IplImage) */
    int  ID;                /* version (=0)*/
    int  nChannels;         /* Most of OpenCV functions support 1,2,3 or 4 channels */
    int  alphaChannel;      /* Ignored by OpenCV */
    int  depth;             /* Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,
                               IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported.  */
    char colorModel[4];     /* Ignored by OpenCV */
    char channelSeq[4];     /* ditto */
    int  dataOrder;         /* 0 - interleaved color channels, 1 - separate color channels.
                               cvCreateImage can only create interleaved images */
    int  origin;            /* 0 - top-left origin,
                               1 - bottom-left origin (Windows bitmaps style).  */
    int  align;             /* Alignment of image rows (4 or 8).
                               OpenCV ignores it and uses widthStep instead.    */
    int  width;             /* Image width in pixels.                           */
    int  height;            /* Image height in pixels.                          */
    struct _IplROI *roi;    /* Image ROI. If NULL, the whole image is selected. */
    struct _IplImage *maskROI;      /* Must be NULL. */
    void  *imageId;                 /* "           " */
    struct _IplTileInfo *tileInfo;  /* "           " */
    int  imageSize;         /* Image data size in bytes
                               (==image->height*image->widthStep
                               in case of interleaved data)*/
    char *imageData;        /* Pointer to aligned image data.         */
    int  widthStep;         /* Size of aligned image row in bytes.    */
    int  BorderMode[4];     /* Ignored by OpenCV.                     */
    int  BorderConst[4];    /* Ditto.                                 */
    char *imageDataOrigin;  /* Pointer to very origin of image data
                               (not necessarily aligned) -
                               needed for correct deallocation */
}
IplImage;

我们可以看到,IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。

IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。

dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。

IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。


 

你可能感兴趣的:(OpenCV - Mat、CvMat、IplImage类型浅析)