dp专辑P - Hardwood floor [dp+dfs]

题意:

举行计算机科学家盛宴的大厅的地板为 M x N (1<=M<=9, 1<=N<=9)的矩形。现在必须要铺上硬木地板砖。可以使用的地板砖形状有两种:
1) 2x1
的矩形砖
2) 2x2
中去掉一个1x1的角形砖
你需要计算用这些砖铺满地板共有多少种不同的方案。 
注意:必须盖满,地板砖数量足够多,不能存在同时被多个板砖覆盖的部分


分析:

周伟 《状态压缩》 里面的例题 http://wenku.baidu.com/view/4cd4891eb7360b4c2e3f6427.html


//AC CODE:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define maxn 10

typedef long long lld;

lld f[maxn][(1<<maxn)-1];//状态为f[i][s]前i-1行已覆盖,第i行状态为s时的总数
lld n,m,tot;

void dfs(lld t,lld curRowStk,lld preRowStk,lld b1,lld b2,lld p)
{
//t当前行
//curRowStk为当前行
//preRowStk前一行,
//b1为当前行在p列填完时对后一列(p+1)的影响,有没有把后一列给占了,占了为1,反之为0
//b2为i-1行对后一列的影响
//p为当前多在列
    if (p>m)//结束条件
    {
        if (b1==0 && b2==0)        //注意条件
            f[t][curRowStk]+=f[t-1][preRowStk];
        return ;
    }
    if (b1==0 && b2==0)//  1
    {                  //  1
        dfs(t,curRowStk<<1|1,preRowStk<<1  ,0,0,p+1);      //第1种状况  竖着
        //curRowStk<<1|1 即为把curRowStk的二进制表示后面加上一个1,对于本题来说就是(p+1)列上放置,
        //preRowStk<<1   即为把preRowStk的二进制表示后面加上一个0,对于本题来说就是(p+1)列上不放置。
        dfs(t,curRowStk<<1|1,preRowStk<<1|1,1,0,p+1);      //第2种状况  横着
        dfs(t,curRowStk<<1|1,preRowStk<<1  ,1,0,p+1);      //第3种状况  少右上角
        dfs(t,curRowStk<<1|1,preRowStk<<1|1,1,1,p+1);      //第4种状况  少左上角
        dfs(t,curRowStk<<1  ,preRowStk<<1  ,1,1,p+1);      //第5种状况  少左下角
        dfs(t,curRowStk<<1|1,preRowStk<<1  ,0,1,p+1);      //第6种状况  少右下角
        dfs(t,curRowStk<<1  ,preRowStk<<1|1,0,0,p+1);      //第7种状况  不放
        return ;
    }
    if (b1==0 && b2==1)//  1 1
    {                  //  1
        dfs(t,curRowStk<<1|1,preRowStk<<1,1,0,p+1);      //第2种状况
        dfs(t,curRowStk<<1|1,preRowStk<<1,1,1,p+1);      //第4种状况
        dfs(t,curRowStk<<1  ,preRowStk<<1,0,0,p+1);      //第7种状况
        return ;
    }
    if (b1==1 && b2==0)//  1
    {                  //  1 1
        dfs(t,curRowStk<<1|1,preRowStk<<1  ,1,1,p+1);       //第5种状况
        dfs(t,curRowStk<<1|1,preRowStk<<1|1,0,0,p+1);       //第7种状况
        return ;
    }
    //  1 1
    //  1 1
    dfs(t,curRowStk<<1|1,preRowStk<<1,0,0,p+1);       //b1,b2都为1,直接向后推
}

int main()
{
    int i;
    scanf("%I64d %I64d",&n,&m);
    if (n<m)//交换n,m  使行数大于列数
    {
        n=n^m;
        m=n^m;
        n=n^m;
    }
    memset(f,0,sizeof(f));
    tot=(1<<m)-1;
    f[0][tot]=1;
    for (i=1; i<=n; i++)
        dfs(i,0,0,0,0,1);
    printf("%I64d\n",f[n][tot]);
    return 0;
}


你可能感兴趣的:(c,360)