1、先看一个标准的hbase作为数据读取源和输出源的样例:
Configuration conf=HBaseConfiguration.create(); Job job=new Job(conf,'job name'); job.setJarByClass(test.class); Scan scan=new Scan(); TableMapReduceUtil.iniTableMapperJob(inputTable,scan,mapper.class,Writable.class,Writable.class,job); TableMapReduceUtil.initTableReducerJob(outputTable,reducer.class,job); job.waitForCompletion(true);
首先创建配置信息和作业对象,设置作业的类。这些和正常的mapreduce一样,唯一不一样的就是数据源的说明部分,TableMapReduceUtil的initTableMapperJob和initTableReducerJob方法来实现。
用如上代码:
数据输入源是hbase的inputTable表,执行mapper.class进行map过程,输出的key/value类型是ImmutableBytesWritable和Put类型,最后一个参数是作业对象。需要指出的是需要声明一个扫描读入对象scan,进行表扫描读取数据用,其中scan可以配置参数,这里为了例子简单不再详述。
数据输出目标是hbase的outputTable表,输出执行的reduce过程是reducer.class类,操作的作业目标是job。与map比缺少输出类型的标注,因为他们不是必要的,看过源代码就知道mapreduce的TableRecordWriter中write(key,value)方法中,key值是没有用到的。value只能是Put或者Delete两种类型,write方法会自行判断并不用用户指明。
接下来就是mapper类:
public class countUniteRedcuer extends TableReducer<KEYIN, VALUEIN, KEYOUT> { public void reduce(Text key, Iterable<VALUEIN> values, Context context) throws IOException, InterruptedException { //reducer逻辑 context.write(null, put or delete); } }
继承的是hbase中提供的TableMapper类,其实这个类也是继承的MapReduce类。后边跟的两个泛型参数指定类型是mapper输出的数据类型,该类型必须继承自Writable类,例如可能用到的put和delete就可以。需要注意的是要和initTableMapperJob方法指定的数据类型一直。该过程会自动从指定hbase表内一行一行读取数据进行处理。
然后reducer类:
Configuration conf = HBaseConfiguration.create(); Job job = new Job(conf, "job name "); job.setJarByClass(test.class); job.setMapperClass(mapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, path); TableMapReduceUtil.initTableReducerJob(tableName, reducer.class, job);
reducer继承的是TableReducer类。后边指定三个泛型参数,前两个必须对应map过程的输出key/value类型,第三个必须是put或者delete。write的时候可以把key写null,它是不必要的。这样reducer输出的数据会自动插入outputTable指定的表内。
2、有时候我们需要数据源是hdfs的文本,输出对象是hbase。这时候变化也很简单:
Configuration conf = HBaseConfiguration.create(); Job job = new Job(conf, "job name "); job.setJarByClass(test.class); job.setMapperClass(mapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, path); TableMapReduceUtil.initTableReducerJob(tableName, reducer.class, job);
你会发现只需要像平常的mapreduce的作业声明过程一样,指定mapper的执行类和输出key/value类型,指定FileInputFormat.setInputPaths的数据源路径,输出声明不变。便完成了从hdfs文本读取数据输出到hbase的命令声明过程。 mapper和reducer如下:
public class mapper extends Mapper<LongWritable,Writable,Writable,Writable> { public void map(LongWritable key, Text line, Context context) { //mapper逻辑 context.write(k, one); } } public class redcuer extends TableReducer<KEYIN, VALUEIN, KEYOUT> { public void reduce(Writable key, Iterable<Writable> values, Context context) throws IOException, InterruptedException { //reducer逻辑 context.write(null, put or delete); } }
mapper还依旧继承原来的MapReduce类中的Mapper即可。同样注意这前后数据类型的key/value一直性。
3、最后就是从hbase中的表作为数据源读取,hdfs作为数据输出,简单的如下:
Configuration conf = HBaseConfiguration.create(); Job job = new Job(conf, "job name "); job.setJarByClass(test.class); Scan scan = new Scan(); TableMapReduceUtil.initTableMapperJob(inputTable, scan, mapper.class, Writable.class, Writable.class, job); job.setOutputKeyClass(Writable.class); job.setOutputValueClass(Writable.class); FileOutputFormat.setOutputPath(job, Path); job.waitForCompletion(true);
public class mapper extends TableMapper<KEYOUT, VALUEOUT>{ public void map(Writable key, Writable value, Context context) throws IOException, InterruptedException { //mapper逻辑 context.write(key, value); } } } public class reducer extends Reducer<Writable,Writable,Writable,Writable> { public void reducer(Writable key, Writable value, Context context) throws IOException, InterruptedException { //reducer逻辑 context.write(key, value); } } }
最后说一下TableMapper和TableReducer的本质,其实这俩类就是为了简化一下书写代码,因为传入的4个泛型参数里都会有固定的参数类型,所以是Mapper和Reducer的简化版本,本质他们没有任何区别。源码如下:
public abstract class TableMapper<KEYOUT, VALUEOUT> extends Mapper<ImmutableBytesWritable, Result, KEYOUT, VALUEOUT> { } public abstract class TableReducer<KEYIN, VALUEIN, KEYOUT> extends Reducer<KEYIN, VALUEIN, KEYOUT, Writable> { }