<img src="http://img.blog.csdn.net/20151130170932846" alt="" />
<img src="http://img.blog.csdn.net/20151130170947104" alt="" /><img src="http://img.blog.csdn.net/20151130170954126" alt="" /> <img src="http://img.blog.csdn.net/20151130171003910" alt="" />
//头文件 #ifndef GRAPH_H_INCLUDED #define GRAPH_H_INCLUDED #define MAXV 100 //最大顶点个数 #define INF 32767 //INF表示∞ typedef int InfoType; //以下定义邻接矩阵类型 typedef struct { int no; //顶点编号 InfoType info; //顶点其他信息,在此存放带权图权值 } VertexType; //顶点类型 typedef struct //图的定义 { int edges[MAXV][MAXV]; //邻接矩阵 int n,e; //顶点数,弧数 VertexType vexs[MAXV]; //存放顶点信息 } MGraph; //图的邻接矩阵类型 //以下定义邻接表类型 typedef struct ANode //弧的结点结构类型 { int adjvex; //该弧的终点位置 struct ANode *nextarc; //指向下一条弧的指针 InfoType info; //该弧的相关信息,这里用于存放权值 } ArcNode; typedef int Vertex; typedef struct Vnode //邻接表头结点的类型 { Vertex data; //顶点信息 int count; //存放顶点入度,只在拓扑排序中用 ArcNode *firstarc; //指向第一条弧 } VNode; typedef VNode AdjList[MAXV]; //AdjList是邻接表类型 typedef struct { AdjList adjlist; //邻接表 int n,e; //图中顶点数n和边数e } ALGraph; //图的邻接表类型 //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图 //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针) // n - 矩阵的阶数 // g - 要构造出来的邻接矩阵数据结构 void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵 void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表 void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g void DispMat(MGraph g);//输出邻接矩阵g void DispAdj(ALGraph *G);//输出邻接表G #endif // GRAPH_H_INCLUDED
源文件 #include <stdio.h> #include <malloc.h> #include "graph.h" //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图 //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针) // n - 矩阵的阶数 // g - 要构造出来的邻接矩阵数据结构 void ArrayToMat(int *Arr, int n, MGraph &g) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 g.n=n; for (i=0; i<g.n; i++) for (j=0; j<g.n; j++) { g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用 if(g.edges[i][j]!=0 && g.edges[i][j]!=INF) count++; } g.e=count; } void ArrayToList(int *Arr, int n, ALGraph *&G) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); G->n=n; for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<n; i++) //检查邻接矩阵中每个元素 for (j=n-1; j>=0; j--) if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j] { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=Arr[i*n+j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->e=count; } void MatToList(MGraph g, ALGraph *&G) //将邻接矩阵g转换成邻接表G { int i,j; ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素 for (j=g.n-1; j>=0; j--) if (g.edges[i][j]!=0) //存在一条边 { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=g.edges[i][j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->n=g.n; G->e=g.e; } void ListToMat(ALGraph *G,MGraph &g) //将邻接表G转换成邻接矩阵g { int i,j; ArcNode *p; g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用 g.e=G->e; for (i=0; i<g.n; i++) //先初始化邻接矩阵 for (j=0; j<g.n; j++) g.edges[i][j]=0; for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值 { p=G->adjlist[i].firstarc; while (p!=NULL) { g.edges[i][p->adjvex]=p->info; p=p->nextarc; } } } void DispMat(MGraph g) //输出邻接矩阵g { int i,j; for (i=0; i<g.n; i++) { for (j=0; j<g.n; j++) if (g.edges[i][j]==INF) printf("%3s","∞"); else printf("%3d",g.edges[i][j]); printf("\n"); } } void DispAdj(ALGraph *G) //输出邻接表G { int i; ArcNode *p; for (i=0; i<G->n; i++) { p=G->adjlist[i].firstarc; printf("%3d: ",i); while (p!=NULL) { printf("-->%d/%d ",p->adjvex,p->info); p=p->nextarc; } printf("\n"); } }
//主函数 #include <stdio.h> #include <malloc.h> typedef int KeyType; typedef struct node //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据域 struct node *lchild,*rchild; //左右孩子指针 } BSTNode; //在p所指向的二叉排序树中,插入值为k的节点 int InsertBST(BSTNode *&p,KeyType k) { if (p==NULL) //原树为空, 新插入的记录为根结点 { p=(BSTNode *)malloc(sizeof(BSTNode)); p->key=k; p->lchild=p->rchild=NULL; return 1; } else if (k==p->key) //树中存在相同关键字的结点,返回0 return 0; else if (k<p->key) return InsertBST(p->lchild,k); //插入到*p的左子树中 else return InsertBST(p->rchild,k); //插入到*p的右子树中 } //由有n个元素的数组A,创建一个二叉排序树 BSTNode *CreateBST(KeyType A[],int n) //返回BST树根结点指针 { BSTNode *bt=NULL; //初始时bt为空树 int i=0; while (i<n) { InsertBST(bt,A[i]); //将关键字A[i]插入二叉排序树T中 i++; } return bt; //返回建立的二叉排序树的根指针 } //输出一棵排序二叉树 void DispBST(BSTNode *bt) { if (bt!=NULL) { printf("%d",bt->key); if (bt->lchild!=NULL || bt->rchild!=NULL) { printf("("); //有孩子结点时才输出( DispBST(bt->lchild); //递归处理左子树 if (bt->rchild!=NULL) printf(","); //有右孩子结点时才输出, DispBST(bt->rchild); //递归处理右子树 printf(")"); //有孩子结点时才输出) } } } //在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL BSTNode *SearchBST(BSTNode *bt,KeyType k) { if (bt==NULL || bt->key==k) //递归终结条件 return bt; if (k<bt->key) return SearchBST(bt->lchild,k); //在左子树中递归查找 else return SearchBST(bt->rchild,k); //在右子树中递归查找 } //二叉排序树中查找的非递归算法 BSTNode *SearchBST1(BSTNode *bt,KeyType k) { while (bt!=NULL) { if (k==bt->key) return bt; else if (k<bt->key) bt=bt->lchild; else bt=bt->rchild; } return NULL; } void Delete1(BSTNode *p,BSTNode *&r) //当被删*p结点有左右子树时的删除过程 { BSTNode *q; if (r->rchild!=NULL) Delete1(p,r->rchild); //递归找最右下结点 else //找到了最右下结点*r { p->key=r->key; //将*r的关键字值赋给*p q=r; r=r->lchild; //直接将其左子树的根结点放在被删结点的位置上 free(q); //释放原*r的空间 } } void Delete(BSTNode *&p) //从二叉排序树中删除*p结点 { BSTNode *q; if (p->rchild==NULL) //*p结点没有右子树的情况 { q=p; p=p->lchild; //直接将其右子树的根结点放在被删结点的位置上 free(q); } else if (p->lchild==NULL) //*p结点没有左子树的情况 { q=p; p=p->rchild; //将*p结点的右子树作为双亲结点的相应子树 free(q); } else Delete1(p,p->lchild); //*p结点既没有左子树又没有右子树的情况 } int DeleteBST(BSTNode *&bt, KeyType k) //在bt中删除关键字为k的结点 { if (bt==NULL) return 0; //空树删除失败 else { if (k<bt->key) return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点 else if (k>bt->key) return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点 else { Delete(bt); //调用Delete(bt)函数删除*bt结点 return 1; } } } int main() { BSTNode *bt; int n=12,x=46; KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11}; bt=CreateBST(a,n); printf("BST:"); DispBST(bt); printf("\n"); printf("删除%d结点\n",x); if (SearchBST(bt,x)!=NULL) { DeleteBST(bt,x); printf("BST:"); DispBST(bt); printf("\n"); } return 0; }
运行结果: