详解Linux内核双向循环链表算法的实现(下)

    2、双向链表在Linux内核中的实现

    Linux内核对双向循环链表的设计非常巧妙,链表的所有运算都基于只有两个指针域的list_head结构体来进行。 

/* linux-2.6.38.8/include/linux/types.h */
struct list_head {
	struct list_head *next, *prev;
};

    链表的运算(源代码都在linux-2.6.38.8/include/linux/list.h文件中定义,并且假定CONFIG_DEBUG_LIST未定义):

    (1)、链表头结点的创建

    2.1.1 静态创建 

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

    通过LIST_HEAD宏创建一个list_head结构体变量name,并把name的所有成员(next和prev)都初始化为name的首地址。 

    2.1.2 动态创建 

static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}

    把list_head结构体变量的首地址传递给INIT_LIST_HEAD函数来对其成员进行初始化。

    (2)、结点的添加

    list_add函数是把新结点new添加到head结点的后面,而list_add_tail函数是把新结点new插入到结点head的前面。

    函数源代码如下: 

static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

    图示如下:

 


    (3)、结点的删除

    list_del函数的作用是将结点*entry从链表中移走,并把此结点的两个成员分别初始化为LIST_POISON1和LIST_POISON2。注意,这里的*entry结点所占用的内存并没有被释放。

    list_del_init函数的作用也是将结点*entry从链表中移走,但它把此结点的两个成员初始化为entry。 

static inline void __list_del(struct list_head * prev, struct list_head * next)
{
	next->prev = prev;
	prev->next = next;
}
static inline void __list_del_entry(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}
static inline void list_del_init(struct list_head *entry)
{
	__list_del_entry(entry);
	INIT_LIST_HEAD(entry);
}

    LIST_POISON1和LIST_POISON2的值定义在linux-2.6.38.8/include/linux/poison.h文件中: 

#define LIST_POISON1  ((void *) 0x00100100 + POISON_POINTER_DELTA)
#define LIST_POISON2  ((void *) 0x00200200 + POISON_POINTER_DELTA)

    其中POISON_POINTER_DELTA的值在CONFIG_ILLEGAL_POINTER_VALUE未配置时为0。

    (4)、结点的替换

    list_replace函数的作用是用结点*new替换掉结点*old,list_replace_init函数的作用与list_replace相同,除了它还会把*old结点的两个成员初始化为old外。 

static inline void list_replace(struct list_head *old,
				struct list_head *new)
{
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
					struct list_head *new)
{
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

     (5)、结点的移动

    list_move函数的作用是把*list结点从它所在的链表中移除,然后把它添加到*head结点的后面。list_move_tail函数的作用与list_move相同,但它把*list插入到*head结点的前面。 

static inline void list_move(struct list_head *list, struct list_head *head)
{
	__list_del_entry(list);
	list_add(list, head);
}
static inline void list_move_tail(struct list_head *list,
				  struct list_head *head)
{
	__list_del_entry(list);
	list_add_tail(list, head);
}

    (6)、判断*list是否是链表head的最后一个结点,是则返回1,否则返回0 

static inline int list_is_last(const struct list_head *list,
				const struct list_head *head)
{
	return list->next == head;
}

    (7)、判断head是否为空表,是则返回1,否则返回0 

static inline int list_empty(const struct list_head *head)
{
	return head->next == head;
}
static inline int list_empty_careful(const struct list_head *head)
{
	struct list_head *next = head->next;
	return (next == head) && (next == head->prev);
}

    (8)、翻转链表 

static inline void list_rotate_left(struct list_head *head)
{
	struct list_head *first;

	if (!list_empty(head)) {
		first = head->next;
		list_move_tail(first, head);
	}
}

    (9)、判断链表是否只有一个结点,是则返回1,否则返回0 

static inline int list_is_singular(const struct list_head *head)
{
	return !list_empty(head) && (head->next == head->prev);
}

    (10)、切割链表

    list_cut_position函数的功能是将链表head从头结点head(不包含)开始到entry(包含,并且它是链表head中的结点)结点结束之间的所有结点都切割下来,并添加到list上,以组成一个新的链表list。原来的head链表将组成一个新的小链表。 

static inline void __list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry)
{
	struct list_head *new_first = entry->next;
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry;
	entry->next = list;
	head->next = new_first;
	new_first->prev = head;
}
static inline void list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry)
{
	if (list_empty(head))
		return;
	if (list_is_singular(head) &&
		(head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

    (11)、合并链表

    list_splice函数的作用是将链表list(不包含结点*list)插入到链表head的head结点后,而list_splice_tail函数的作用是将链表list(不包含结点*list)插入到链表head的head结点前。

    list_splice_init和list_splice_tail_init函数的作用与其相应的函数相同,除了它们都初始化*list结点为list。 

static inline void __list_splice(const struct list_head *list,
				 struct list_head *prev,
				 struct list_head *next)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}
static inline void list_splice(const struct list_head *list,
				struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}
static inline void list_splice_tail(struct list_head *list,
				struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}
static inline void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}
static inline void list_splice_tail_init(struct list_head *list,
					 struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

    (12)、通过成员指针获得整个结构体的指针

    链表操作如果仅仅针对list_head结构体就没有什么意义,所以必须要获得包含它的整个结构体的地址。它们只是对container_of宏的封装,关于container_of宏的使用方法请参考http://blog.csdn.net/npy_lp/article/details/7010752。 

#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)
#define list_first_entry(ptr, type, member) \
	list_entry((ptr)->next, type, member)

    (13)、遍历链表

    list_for_each函数是根据list_head的next成员来遍历整个链表,而list_for_each_prev函数是根据prev成员。其中参数head一般是链表的头结点。 

#define list_for_each(pos, head) \
	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
        	pos = pos->next)
#define __list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
        	pos = pos->prev)

    list_for_each_safe和list_for_each_prev_safe函数使用list_head结构体变量n作为临时存储变量。 

#define list_for_each_safe(pos, n, head) \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		pos = n, n = pos->next)
#define list_for_each_prev_safe(pos, n, head) \
	for (pos = (head)->prev, n = pos->prev; \
	     prefetch(pos->prev), pos != (head); \
	     pos = n, n = pos->prev)

    list_for_each_entry和list_for_each_entry_reverse函数的作用是根据head的下一个或前一个结点来遍历整个head链表,并返回包含list_head结构体成员的大结构体指针,member是list_head结构体在大结构体中的成员名。 

#define list_for_each_entry(pos, head, member)				\
	for (pos = list_entry((head)->next, typeof(*pos), member);	\
	     prefetch(pos->member.next), &pos->member != (head); 	\
	     pos = list_entry(pos->member.next, typeof(*pos), member))
#define list_for_each_entry_reverse(pos, head, member)			\
	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
	     prefetch(pos->member.prev), &pos->member != (head); 	\
	     pos = list_entry(pos->member.prev, typeof(*pos), member))

    list_for_each_entry_continue和list_for_each_entry_continue_reverse函数是以pos的下一个或前一个结点开始遍历链表head。 

#define list_prepare_entry(pos, head, member) \
	((pos) ? : list_entry(head, typeof(*pos), member))
#define list_for_each_entry_continue(pos, head, member) 		\
	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
	     prefetch(pos->member.next), &pos->member != (head);	\
	     pos = list_entry(pos->member.next, typeof(*pos), member))
#define list_for_each_entry_continue_reverse(pos, head, member)		\
	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
	     prefetch(pos->member.prev), &pos->member != (head);	\
	     pos = list_entry(pos->member.prev, typeof(*pos), member))

    list_for_each_entry_from函数以当前结点pos开始遍历。 

#define list_for_each_entry_from(pos, head, member) 			\
	for (; prefetch(pos->member.next), &pos->member != (head);	\
	     pos = list_entry(pos->member.next, typeof(*pos), member))

    list_for_each_entry_safe、list_for_each_entry_safe_continue、list_for_each_entry_safe_from和list_for_each_entry_safe_reverse这四个函数中的n参数与pos的数据类型相同,其他功能与它们相应的函数是相同的。 

#define list_for_each_entry_safe(pos, n, head, member)			\
	for (pos = list_entry((head)->next, typeof(*pos), member),	\
		n = list_entry(pos->member.next, typeof(*pos), member);	\
	     &pos->member != (head); 					\
	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
		n = list_entry(pos->member.next, typeof(*pos), member);		\
	     &pos->member != (head);						\
	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
#define list_for_each_entry_safe_from(pos, n, head, member) 			\
	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
	     &pos->member != (head);						\
	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
		n = list_entry(pos->member.prev, typeof(*pos), member);	\
	     &pos->member != (head); 					\
	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))

    list_safe_reset_next函数的作用是根据结点pos获得n。 

#define list_safe_reset_next(pos, n, member)				\
	n = list_entry(pos->member.next, typeof(*pos), member)


你可能感兴趣的:(算法,list,struct,存储,each,linux内核)