中断:
异常:
中断描述符表(IDT):256项,其中的每一项关联一个中断/异常处理过程,有三种类型:
在指令执行过程中控制单元检测是否有中断/异常发生,如果有,等待该条指令执行完成以后,硬件按如下过程执行:
b. 用与新特权级相关的栈段和栈指针装载ss和esp寄存器。这些值可以在进程的tss段中找到。
c. 在新的栈(内核栈)中保存用户态的ss和esp,这些值指明了用户态相关栈的逻辑地址。
从中断/异 常返回:
中断/异常处理完后,相应的处理程序会执行一条iret指令,做了如下事情:
1)用保存在 栈中的值装载cs、eip和eflags寄存器。如果一个硬件出错码曾被压入栈中,那么弹出这个硬件出错码
2)检查处理程序的特权级是 否等于cs中最低两位的值(这意味着进程在被中断的时候是运行在内核态还是用户态)。若是内核态,iret终止执行;否则,转入3
3) 从栈中装载ss和esp寄存器。这步意味着返回到与旧特权级相关的栈。
4)检查ds、es、fs和gs段寄存器的内容,如果其中一个寄 存器包含的选择符是一个段描述符,并且特权级比当前特权级高,则清除相应的寄存器。这么做是防止怀有恶意的用户程序利用这些寄存器访问内核空间。
关于硬件中断和异常的原理简单描述为:当中断到到来时,由硬件触发中断引脚,通过引脚号找到中断号,然后通过中断号从中断描述符表(IDT)中找到对应的项。从gdtr寄存器中获得GDT的基地址,并在GDT中查找,以读取IDT表项中的选择符所标识的段描述符。这个描述符指定中断或异常处理程序所在段的基地址。权限检查。保存现场。装载cs和eip寄存器,其值分别是IDT表中第i想们描述符的段选择符和偏移量字段。这些值给出了中断或者异常处理程序的第一条指令的逻辑地址。中断或异常返回后,相应的处理程序必须产生一条iret指令,把控制权转交给被中断的进程。
中断流:
中断描述符表的初始化
在内核初始化过程中,setup_idt汇编语言函数用同一个中断门(即指向ignore_int中断处理程序)来填充所有这256个表项
/* * setup_idt * * sets up a idt with 256 entries pointing to * ignore_int, interrupt gates. It doesn't actually load * idt - that can be done only after paging has been enabled * and the kernel moved to PAGE_OFFSET. Interrupts * are enabled elsewhere, when we can be relatively * sure everything is ok. * * Warning: %esi is live across this function. */ setup_idt: lea ignore_int,%edx movl $(__KERNEL_CS << 16),%eax movw %dx,%ax /* selector = 0x0010 = cs */ movw $0x8E00,%dx /* interrupt gate - dpl=0, present */ lea idt_table,%edi mov $256,%ecx rp_sidt: movl %eax,(%edi) movl %edx,4(%edi) addl $8,%edi dec %ecx jne rp_sidt .macro set_early_handler handler,trapno lea \handler,%edx movl $(__KERNEL_CS << 16),%eax movw %dx,%ax movw $0x8E00,%dx /* interrupt gate - dpl=0, present */ lea idt_table,%edi movl %eax,8*\trapno(%edi) movl %edx,8*\trapno+4(%edi) .endm set_early_handler handler=early_divide_err,trapno=0 set_early_handler handler=early_illegal_opcode,trapno=6 set_early_handler handler=early_protection_fault,trapno=13 set_early_handler handler=early_page_fault,trapno=14 ret
在start_kernel中调用trap_init函数想idt表中添加项(主要是异常处理)
void __init trap_init(void) { int i; #ifdef CONFIG_EISA void __iomem *p = early_ioremap(0x0FFFD9, 4); if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) EISA_bus = 1; early_iounmap(p, 4); #endif set_intr_gate(0, ÷_error); set_intr_gate_ist(1, &debug, DEBUG_STACK); set_intr_gate_ist(2, &nmi, NMI_STACK); /* int3 can be called from all */ set_system_intr_gate_ist(3, &int3, DEBUG_STACK); /* int4 can be called from all */ set_system_intr_gate(4, &overflow); set_intr_gate(5, &bounds); set_intr_gate(6, &invalid_op); set_intr_gate(7, &device_not_available); #ifdef CONFIG_X86_32 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); #else set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); #endif set_intr_gate(9, &coprocessor_segment_overrun); set_intr_gate(10, &invalid_TSS); set_intr_gate(11, &segment_not_present); set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); set_intr_gate(13, &general_protection); set_intr_gate(14, &page_fault); set_intr_gate(15, &spurious_interrupt_bug); set_intr_gate(16, &coprocessor_error); set_intr_gate(17, &alignment_check); #ifdef CONFIG_X86_MCE set_intr_gate_ist(18, &machine_check, MCE_STACK); #endif set_intr_gate(19, &simd_coprocessor_error); /* Reserve all the builtin and the syscall vector: */ for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) set_bit(i, used_vectors); #ifdef CONFIG_IA32_EMULATION set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); set_bit(IA32_SYSCALL_VECTOR, used_vectors); #endif #ifdef CONFIG_X86_32 if (cpu_has_fxsr) { printk(KERN_INFO "Enabling fast FPU save and restore... "); set_in_cr4(X86_CR4_OSFXSR); printk("done.\n"); } if (cpu_has_xmm) { printk(KERN_INFO "Enabling unmasked SIMD FPU exception support... "); set_in_cr4(X86_CR4_OSXMMEXCPT); printk("done.\n"); } set_system_trap_gate(SYSCALL_VECTOR, &system_call); set_bit(SYSCALL_VECTOR, used_vectors); #endif /* * Should be a barrier for any external CPU state: */ cpu_init(); x86_init.irqs.trap_init(); }
异常处理
异常处理程序有一个标准的结构,由以下三部分组成:
1,在内核堆栈中保存大多数寄存器的内容(这部分用汇编语言实现)
例如,对于除0异常的汇编
ENTRY(divide_error) RING0_INT_FRAME pushl $0 # no error code CFI_ADJUST_CFA_OFFSET 4 pushl $do_divide_error CFI_ADJUST_CFA_OFFSET 4 jmp error_code CFI_ENDPROC END(divide_error)
其中入口divide_error为idt表中对应项的处理函数地址,也就是说,产生异常后首先跳到这里执行。当异常产生时,如果控制单元没有自动地把一个硬件出错代码插入到栈中,相应的汇编片段会含一条pushl $0指令,在栈中垫上一个空值。然后,把高级c函数的地址压入栈中,他的名字由异常处理程序名与do_前缀组成。然后跳转到error_code中执行
error_code: /* the function address is in %gs's slot on the stack */ pushl %fs CFI_ADJUST_CFA_OFFSET 4 /*CFI_REL_OFFSET fs, 0*/ pushl %es CFI_ADJUST_CFA_OFFSET 4 /*CFI_REL_OFFSET es, 0*/ pushl %ds CFI_ADJUST_CFA_OFFSET 4 /*CFI_REL_OFFSET ds, 0*/ pushl %eax CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET eax, 0 pushl %ebp CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET ebp, 0 pushl %edi CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET edi, 0 pushl %esi CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET esi, 0 pushl %edx CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET edx, 0 pushl %ecx CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET ecx, 0 pushl %ebx CFI_ADJUST_CFA_OFFSET 4 CFI_REL_OFFSET ebx, 0 cld movl $(__KERNEL_PERCPU), %ecx movl %ecx, %fs UNWIND_ESPFIX_STACK GS_TO_REG %ecx movl PT_GS(%esp), %edi # get the function address movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart REG_TO_PTGS %ecx SET_KERNEL_GS %ecx movl $(__USER_DS), %ecx movl %ecx, %ds movl %ecx, %es TRACE_IRQS_OFF movl %esp,%eax # pt_regs pointer call *%edi jmp ret_from_exception
error_code汇编代码主要完成大部分寄存器的保存,然后调用call *%edi代码调用上面保存在栈中的c函数执行。
在linux2.6内核中,采用宏的方式定义这类do_函数:
DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) DO_ERROR(4, SIGSEGV, "overflow", overflow) DO_ERROR(5, SIGSEGV, "bounds", bounds) DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) #ifdef CONFIG_X86_32 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) #endif
我们对上面的宏,看一个
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ { \ siginfo_t info; \ info.si_signo = signr; \ info.si_errno = 0; \ info.si_code = sicode; \ info.si_addr = (void __user *)siaddr; \ if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ == NOTIFY_STOP) \ return; \ conditional_sti(regs); \ do_trap(trapnr, signr, str, regs, error_code, &info); \ }
可见最后都调用了do_trap函数来执行。
异常返回
当执行异常处理的C函数终止时,程序执行一条jmp指令以跳转到ret_from_exception函数(上面的error_code汇编函数)
ret_from_exception: preempt_stop(CLBR_ANY) ret_from_intr: GET_THREAD_INFO(%ebp) check_userspace: movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax cmpl $USER_RPL, %eax /*当被中断的程序在中断发生运行时在内核态*/ jb resume_kernel # not returning to v8086 or userspace /*在用户空间时*/ ENTRY(resume_userspace) LOCKDEP_SYS_EXIT DISABLE_INTERRUPTS(CLBR_ANY) # make sure we don't miss an interrupt # setting need_resched or sigpending # between sampling and the iret TRACE_IRQS_OFF movl TI_flags(%ebp), %ecx andl $_TIF_WORK_MASK, %ecx # is there any work to be done on # int/exception return? jne work_pending jmp restore_all END(ret_from_exception) #ifdef CONFIG_PREEMPT ENTRY(resume_kernel) DISABLE_INTERRUPTS(CLBR_ANY) /*允许内核抢占时,执行need_resched*/ cmpl $0,TI_preempt_count(%ebp) # non-zero preempt_count ? /*不等于0,被中断的程序重新开始执行*/ jnz restore_all need_resched: movl TI_flags(%ebp), %ecx # need_resched set ? testb $_TIF_NEED_RESCHED, %cl jz restore_all testl $X86_EFLAGS_IF,PT_EFLAGS(%esp) # interrupts off (exception path) ? jz restore_all call preempt_schedule_irq jmp need_resched END(resume_kernel) #endif CFI_ENDPROC
中断请求初始化
对于每一个外设,要么以静态(声明为 static
类型的全局变量)或动态(调用request_irq
函数)的方式向 Linux 内核注册中断处理程序。不管以何种方式注册,都会声明或分配一块irqaction
结构(其中handler
指向中断服务程序),然后调用setup_irq()
函数,将irq_desc_t
和irqaction
联系起来。irq_desc[]数组中每一项对应一个中断向量,每一个中断向量为一个irq_desc类型的变量,该变量中有个action指针,指向irqaction链表的首地址。也就是说多个中断服务(irqaction)可以共享一个中断向量,这些中断服务以链表的方式依次链入,当中断到来时,同一中断向量中的所有中断服务函数都会依次执行一遍。request_irq函数主要是实例化一个irqaction结构,这里直接看setup_irq函数。
/* * Internal function to register an irqaction - typically used to * allocate special interrupts that are part of the architecture. */ /*将中断服务链入irq_desc[irq]->action中*/ static int __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) { struct irqaction *old, **old_ptr; const char *old_name = NULL; unsigned long flags; int nested, shared = 0; int ret; if (!desc) return -EINVAL; if (desc->chip == &no_irq_chip) return -ENOSYS; /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & IRQF_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } /* Oneshot interrupts are not allowed with shared */ if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED)) return -EINVAL; /* * Check whether the interrupt nests into another interrupt * thread. */ /*如果嵌套在另一个中断线程中*/ nested = desc->status & IRQ_NESTED_THREAD; if (nested) { if (!new->thread_fn) return -EINVAL; /* * Replace the primary handler which was provided from * the driver for non nested interrupt handling by the * dummy function which warns when called. */ new->handler = irq_nested_primary_handler; } /* * Create a handler thread when a thread function is supplied * and the interrupt does not nest into another interrupt * thread. *//*如果提供了中断线程*/ if (new->thread_fn && !nested) { struct task_struct *t; /*创建内核中断线程*/ t = kthread_create(irq_thread, new, "irq/%d-%s", irq, new->name); if (IS_ERR(t)) return PTR_ERR(t); /* * We keep the reference to the task struct even if * the thread dies to avoid that the interrupt code * references an already freed task_struct. *//*增加使用计数*/ get_task_struct(t); new->thread = t; } /* * The following block of code has to be executed atomically */ spin_lock_irqsave(&desc->lock, flags); old_ptr = &desc->action;/*保存action链表头*/ old = *old_ptr; if (old) {/*如果链表不为空,也就是说该中断号对应的有中断服务函数*/ /* * Can't share interrupts unless both agree to and are * the same type (level, edge, polarity). So both flag * fields must have IRQF_SHARED set and the bits which * set the trigger type must match. */ if (!((old->flags & new->flags) & IRQF_SHARED) || ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK)) { old_name = old->name; goto mismatch; } #if defined(CONFIG_IRQ_PER_CPU) /* All handlers must agree on per-cpuness */ if ((old->flags & IRQF_PERCPU) != (new->flags & IRQF_PERCPU)) goto mismatch; #endif /* add new interrupt at end of irq queue */ do {/*这一步是遍历到链表的最后一个 old->next=NULL为止*/ old_ptr = &old->next; old = *old_ptr; } while (old); shared = 1;/*共享*/ } if (!shared) { /*设置irq_desc[irq]结构中chip成员的还没设置的指针 ,让它们指向一些默认函数*/ irq_chip_set_defaults(desc->chip); init_waitqueue_head(&desc->wait_for_threads); /* Setup the type (level, edge polarity) if configured: */ /*设置触发方式*/ if (new->flags & IRQF_TRIGGER_MASK) { ret = __irq_set_trigger(desc, irq, new->flags & IRQF_TRIGGER_MASK); if (ret) goto out_thread; } else compat_irq_chip_set_default_handler(desc); #if defined(CONFIG_IRQ_PER_CPU) if (new->flags & IRQF_PERCPU) desc->status |= IRQ_PER_CPU; #endif desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); if (new->flags & IRQF_ONESHOT) desc->status |= IRQ_ONESHOT; if (!(desc->status & IRQ_NOAUTOEN)) { desc->depth = 0; desc->status &= ~IRQ_DISABLED; desc->chip->startup(irq); } else /* Undo nested disables: */ desc->depth = 1; /* Exclude IRQ from balancing if requested */ if (new->flags & IRQF_NOBALANCING) desc->status |= IRQ_NO_BALANCING; /* Set default affinity mask once everything is setup */ setup_affinity(irq, desc); } else if ((new->flags & IRQF_TRIGGER_MASK) && (new->flags & IRQF_TRIGGER_MASK) != (desc->status & IRQ_TYPE_SENSE_MASK)) { /* hope the handler works with the actual trigger mode... */ pr_warning("IRQ %d uses trigger mode %d; requested %d\n", irq, (int)(desc->status & IRQ_TYPE_SENSE_MASK), (int)(new->flags & IRQF_TRIGGER_MASK)); } new->irq = irq;/*将new的irq设置为irq*/ *old_ptr = new;/*将new链入链表中,这个从上面可以看到*/ /* Reset broken irq detection when installing new handler */ desc->irq_count = 0; desc->irqs_unhandled = 0; /* * Check whether we disabled the irq via the spurious handler * before. Reenable it and give it another chance. */ if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) { desc->status &= ~IRQ_SPURIOUS_DISABLED; __enable_irq(desc, irq, false);/*启用中断*/ } spin_unlock_irqrestore(&desc->lock, flags); /* * Strictly no need to wake it up, but hung_task complains * when no hard interrupt wakes the thread up. */ if (new->thread) wake_up_process(new->thread); /*下面为注册proc文件系统对应的项*/ register_irq_proc(irq, desc); new->dir = NULL; register_handler_proc(irq, new); return 0; mismatch: #ifdef CONFIG_DEBUG_SHIRQ if (!(new->flags & IRQF_PROBE_SHARED)) { printk(KERN_ERR "IRQ handler type mismatch for IRQ %d\n", irq); if (old_name) printk(KERN_ERR "current handler: %s\n", old_name); dump_stack(); } #endif ret = -EBUSY; out_thread: spin_unlock_irqrestore(&desc->lock, flags); if (new->thread) { struct task_struct *t = new->thread; new->thread = NULL; if (likely(!test_bit(IRQTF_DIED, &new->thread_flags))) kthread_stop(t); put_task_struct(t); } return ret; }
中断相应和服务
清楚了中断机制和内核中有关数据结构的初始化以后,我们就从中断请求的发生到CPU的相应,再到中断服务程序的调用与返回,沿着CPU所经过的路线走一遍。
当某个外设已经产生了依次中断请求后,该请求通过中断控制器i8259A到达CPU的“中断请求”引线INTR。由于中断时开着的,所以CPU在执行完当前指令后就来相应该次中断请求。
中断向量的设置和初始化主要在setup.s文件中设置了一部分(上面已经介绍),在start_kernel函数中init_IRQ函数最终调用函数
void __init native_init_IRQ(void) { int i; /* Execute any quirks before the call gates are initialised: */ x86_init.irqs.pre_vector_init(); apic_intr_init(); /* * Cover the whole vector space, no vector can escape * us. (some of these will be overridden and become * 'special' SMP interrupts) *//*更新外部中断(IRQ)的IDT表项*/ for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) { /* IA32_SYSCALL_VECTOR could be used in trap_init already. */ if (!test_bit(i, used_vectors))/*跳过系统调用(trap)使用过的槽位*/ set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]); } if (!acpi_ioapic) setup_irq(2, &irq2); #ifdef CONFIG_X86_32 /* * External FPU? Set up irq13 if so, for * original braindamaged IBM FERR coupling. */ if (boot_cpu_data.hard_math && !cpu_has_fpu) setup_irq(FPU_IRQ, &fpu_irq); irq_ctx_init(smp_processor_id()); #endif }可以看到这里将interrupt[]数组中的值设置为中断服务函数而i-FIRST_EXTERNAL_VECTOR中的i为中断号,interrupt[]数组在汇编中实现
ENTRY(interrupt) .text .p2align 5 .p2align CONFIG_X86_L1_CACHE_SHIFT ENTRY(irq_entries_start) RING0_INT_FRAME vector=FIRST_EXTERNAL_VECTOR .rept (NR_VECTORS-FIRST_EXTERNAL_VECTOR+6)/7 .balign 32 .rept 7 .if vector < NR_VECTORS .if vector <> FIRST_EXTERNAL_VECTOR CFI_ADJUST_CFA_OFFSET -4 .endif 1: pushl $(~vector+0x80) /* Note: always in signed byte range */ CFI_ADJUST_CFA_OFFSET 4 .if ((vector-FIRST_EXTERNAL_VECTOR)%7) <> 6 jmp 2f .endif .previous .long 1b .text vector=vector+1 .endif .endr 2: jmp common_interrupt .endr END(irq_entries_start) .previous END(interrupt)上面的代码相当于下面代码
346 ENTRY(irq_entries_start) 347 .rept NR_IRQS /*348-354行重复NR_IRQS次,会被gcc编译时展开,不需手写这么多行重复的代码 */ 348 ALIGN 349 1: pushl $vector-256 /*vector在354行递增 */ 350 jmp common_interrupt /*所有的外部中断处理函数的统一部分,以后再讲述*/ 351 .data 352 .long 1b /*存储着指向349行的地址,但是随着348行-354被gcc展开,每次的值都不同 */ 353 .text 354 vector=vector+1 355 .endr /*与347行呼应*/ 356 357 ALIGN /*首先342行和352行都处于.data段,虽然看起来它们是隔开的,但实际上被gcc安排在了连续的数据段内存中,同理在代码段内存中,354行与350行的指令序列也是连续存储的。另外,348-354行会被gcc展开NR_IRQS次,因此每次352行都会存储一个新的指针,该指针指向每个349行展开的新对象。最后在代码段内存中连续存储了NR_IRQS个代码片断,首地址由irq_entries_start指向。而在数据段内存中连续存储了NR_IRQS个指针,首址存储在interrupt这个全局变量中。这样,例如IRQ号是0 (从init_IRQ()的404行知道,它对应的中断向量是FIRST_EXTERNAL_VECTOR)的中断通过中断门后会触发interrput[0],从而执行: pushl 0-256 jmp common_interrupt 的代码片断,进入到Linux内核安排好的中断入口路径 */common_interrupt:
common_interrupt: /*将中断向量号减256。内核用负数表示所有的中断*/ addl $-0x80,(%esp) /* Adjust vector into the [-256,-1] range */ /*调用SAVE_ALL宏保存寄存器的值*/ SAVE_ALL TRACE_IRQS_OFF /*保存栈顶地址*/ movl %esp,%eax /*调用do_IRQ函数*/ call do_IRQ /*从中断返回*/ jmp ret_from_intr ENDPROC(common_interrupt) CFI_ENDPROC保存现场后调用do_IRQ函数进入c语言中执行中断函数
unsigned int __irq_entry do_IRQ(struct pt_regs *regs) { /*取得原来的寄存器*/ struct pt_regs *old_regs = set_irq_regs(regs); /* high bit used in ret_from_ code */ /*取得中断向量号,通过汇编代码中栈中保存 的寄存器的顺序和前面c函数中的idt的初始化 可以得知这里返回的值再取补 正好是我们要的中断号*/ unsigned vector = ~regs->orig_ax; unsigned irq; /*退出idle进程*/ exit_idle(); /*进入中断*/ irq_enter(); /*中断线号与设备的中断号之间对应关系 ,由系统分派,分派表是一个per-cpu变量vector_irq*/ irq = __get_cpu_var(vector_irq)[vector]; if (!handle_irq(irq, regs)) {/*处理*/ ack_APIC_irq();/*应答apic*/ if (printk_ratelimit()) pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n", __func__, smp_processor_id(), vector, irq); } irq_exit(); set_irq_regs(old_regs); return 1; }
/*下面是处理函数。函数根据中断号,查找相应的desc结构*/ bool handle_irq(unsigned irq, struct pt_regs *regs) { struct irq_desc *desc; int overflow; overflow = check_stack_overflow(); desc = irq_to_desc(irq);/*取得irq对应的中断描述符*/ if (unlikely(!desc)) return false; /*如果是在中断栈上调用,则稍微复杂一点 ,需要先构造一个中断栈,再调用handle_irq*/ if (!execute_on_irq_stack(overflow, desc, irq)) { if (unlikely(overflow)) print_stack_overflow(); /*handle_irq函数指针,指向了handle_level_irq, 或者是handle_edge_irq。不论是哪一种, 中断电流处理函数在会调用handle_IRQ_event 进一步处理,handle_IRQ_event函数的本质是 遍历中断号上所有的action,调用其handler。 这是在设备驱动初始化时向中断子系统注册的 */ desc->handle_irq(irq, desc); } return true; }由上面的注释知,我们直接看handle_IRQ_event函数
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) { irqreturn_t ret, retval = IRQ_NONE; unsigned int status = 0; /*为CPU会禁止中断,这里将其打开,如果没有指定 IRQF_DISABLED标志的话,它表示处理程序在中断禁止 情况下运行*/ if (!(action->flags & IRQF_DISABLED)) local_irq_enable_in_hardirq(); do {/*遍历当前irq的action链表中的所有action,调用之*/ trace_irq_handler_entry(irq, action);/*打开中断跟踪*/ ret = action->handler(irq, action->dev_id);/*调用中断函数*/ trace_irq_handler_exit(irq, action, ret);/*关闭中断跟踪*/ switch (ret) { case IRQ_WAKE_THREAD: /* * Set result to handled so the spurious check * does not trigger. */ ret = IRQ_HANDLED; /* * Catch drivers which return WAKE_THREAD but * did not set up a thread function */ if (unlikely(!action->thread_fn)) { warn_no_thread(irq, action); break; } /* * Wake up the handler thread for this * action. In case the thread crashed and was * killed we just pretend that we handled the * interrupt. The hardirq handler above has * disabled the device interrupt, so no irq * storm is lurking. */ if (likely(!test_bit(IRQTF_DIED, &action->thread_flags))) { set_bit(IRQTF_RUNTHREAD, &action->thread_flags); wake_up_process(action->thread); } /* Fall through to add to randomness */ case IRQ_HANDLED: status |= action->flags; break; default: break; } retval |= ret; action = action->next;/*取得下一个action,如果有的话*/ } while (action); /*如果指定了标志,则使用中断间隔时间为随机数产生器产生熵*/ if (status & IRQF_SAMPLE_RANDOM) add_interrupt_randomness(irq); /*关闭中断,do_IRQ进入下一轮循环——等待新的中断到来*/ local_irq_disable(); return retval; }可知,在handle_event_IRQ函数中完成了具体的中断函数响应执行工作。也在这里我们看出,多个中断服务函数共享同一个中断号时,在每次中断到来时,在中断向量上的服务函数队列中所有的服务函数将执行一遍。而对于中断线程也会在这里得到执行。
到这里中断的初始化、中断服务的相应的分析完了,对于中断返回的退出,基本和异常的返回是一样的,我们从代码中可以看出
ret_from_exception: preempt_stop(CLBR_ANY) ret_from_intr: GET_THREAD_INFO(%ebp) ....