更方便地,可以用Anaconda这样的Python发行版,它里面包含了近200个流行的包。从http://continuum.io/downloads选择所用平台的安装包安装。还觉得麻烦的话用Python Quant Platform。Anaconda装好后进入IPython应该就可以看到相关信息了。
jzj@jzj-VirtualBox:~/workspace$ ipython Python 2.7.9 |Anaconda 2.2.0 (64-bit)| (default, Apr 14 2015, 12:54:25) Type "copyright", "credits" or "license" for more information. IPython 3.0.0 -- An enhanced Interactive Python. Anaconda is brought to you by Continuum Analytics. Please check out: http://continuum.io/thanks and https://binstar.org ...Anaconda带的conda是一个开源包管理器,可以用conda info/list/search查看信息和已安装包。要安装/更新/删除包可以用conda install/update/remove命令。如:
$ conda install Quandl $ conda install bokeh $ conda update pandas如果还需要装些其它库,比如github上的Python库,可以用Python的包安装方式,如pip install和python setup.py --install。不过要注意的是Anaconda安装路径是独立于原系统中的Python环境的。所以要把包安装到Anaconda那个Python环境的话需要指定下参数,可以先看下Python的包路径:
$ python -m site --user-site然后安装包时指定到该路径,如:
$ python setup.py install --prefix=~/.local如果想避免每次开始工作前都输一坨东西,可以建ipython的profile,在其中进行设置。这样每次ipython启动该profile时,相应的环境都自己设置好了。创建名为work的profile:
$ ipython profile create work然后打开配置文件~/.ipython/profile_work/ipython_config.py,按具体的需求进行修改,比如自动加载一些常用的包。
c.InteractiveShellApp.pylab = 'auto' ... c.TerminalIPythonApp.exec_lines = [ 'import numpy as np', 'import pandas as pd' ... ]如果大多数时候都要到该profile下工作的话可以在~/.bashrc里加上下面语句:
alias ipython='ipython --profile=work'这样以后只要敲ipython就OK了。进入ipython shell后要运行python脚本只需执行%run test.py。
from __future__ import print_function, division import numpy as np import pandas as pd import datetime as dt import pandas.io.data as web import matplotlib.finance as mpf import matplotlib.dates as mdates import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager starttime = dt.date(2015,1,1) endtime = dt.date.today() ticker = 'SPY' fh = mpf.fetch_historical_yahoo(ticker, starttime, endtime) r = mlab.csv2rec(fh); fh.close() r.sort() df = pd.DataFrame.from_records(r) quotes = mpf.quotes_historical_yahoo_ohlc(ticker, starttime, endtime) fig, (ax1, ax2) = plt.subplots(2, sharex=True) tdf = df.set_index('date') cdf = tdf['close'] cdf.plot(label = "close price", ax=ax1) pd.rolling_mean(cdf, window=30, min_periods=1).plot(label = "30-day moving averages", ax=ax1) pd.rolling_mean(cdf, window=10, min_periods=1).plot(label = "10-day moving averages", ax=ax1) ax1.set_xlabel(r'Date') ax1.set_ylabel(r'Price') ax1.grid(True) props = font_manager.FontProperties(size=10) leg = ax1.legend(loc='lower right', shadow=True, fancybox=True, prop=props) leg.get_frame().set_alpha(0.5) ax1.set_title('%s Daily' % ticker, fontsize=14) mpf.candlestick_ohlc(ax2, quotes, width=0.6) ax2.set_ylabel(r'Price') for ax in ax1, ax2: fmt = mdates.DateFormatter('%m/%d/%Y') ax.xaxis.set_major_formatter(fmt) ax.grid(True) ax.xaxis_date() ax.autoscale() fig.autofmt_xdate() fig.tight_layout() plt.setp(plt.gca().get_xticklabels(), rotation=30) plt.show() fig.savefig('SPY.png')
2. 近十年中纽约商业交易所(NYMEX)原油期货价格和黄金价格的线性回归关系
from __future__ import print_function, division import numpy as np import pandas as pd import datetime as dt import Quandl import seaborn as sns sns.set(style="darkgrid") token = "???" # Notice: You can get the token by signing up on Quandl (https://www.quandl.com/) starttime = "2005-01-01" endtime = "2015-01-01" interval = "monthly" gold = Quandl.get("BUNDESBANK/BBK01_WT5511", authtoken=token, trim_start=starttime, trim_end=endtime, collapse=interval) nymex_oil_future = Quandl.get("OFDP/FUTURE_CL1", authtoken=token, trim_start=starttime, trim_end=endtime, collapse=interval) brent_oil_future = Quandl.get("CHRIS/ICE_B1", authtoken=token, trim_start=starttime, trim_end=endtime, collapse=interval) #dat = nymex_oil_future.join(brent_oil_future, lsuffix='_a', rsuffix='_b', how='inner') #g = sns.jointplot("Settle_a", "Settle_b", data=dat, kind="reg") dat = gold.join(nymex_oil_future, lsuffix='_a', rsuffix='_b', how='inner') g = sns.jointplot("Value", "Settle", data=dat, kind="reg")
3. 我国三大产业对于GDP的影响
from __future__ import print_function, division from collections import OrderedDict import numpy as np import pandas as pd import datetime as dt import tushare as ts from bokeh.charts import Bar, output_file, show import bokeh.plotting as bp df = ts.get_gdp_contrib() df = df.drop(['industry', 'gdp_yoy'], axis=1) df = df.set_index('year') df = df.sort_index() years = df.index.values.tolist() pri = df['pi'].astype(float).values sec = df['si'].astype(float).values ter = df['ti'].astype(float).values contrib = OrderedDict(Primary=pri, Secondary=sec, Tertiary=ter) years = map(unicode, map(str, years)) output_file("stacked_bar.html") bar = Bar(contrib, years, stacked=True, title="Contribution Rate for GDP", \ xlabel="Year", ylabel="Contribution Rate(%)") show(bar)
4. 国内沪指,深指等几大指数分布
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function, division from collections import OrderedDict import pandas as pd import tushare as ts from bokeh.charts import Histogram, output_file, show sh = ts.get_hist_data('sh') sz = ts.get_hist_data('sz') zxb = ts.get_hist_data('zxb') cyb = ts.get_hist_data('cyb') df = pd.concat([sh['close'], sz['close'], zxb['close'], cyb['close']], \ axis=1, keys=['sh', 'sz', 'zxb', 'cyb']) fst_idx = -700 distributions = OrderedDict(sh=list(sh['close'][fst_idx:]), cyb=list(cyb['close'][fst_idx:]), sz=list(sz['close'][fst_idx:]), zxb=list(zxb['close'][fst_idx:])) df = pd.DataFrame(distributions) col_mapping = {'sh': u'沪指', 'zxb': u'中小板', 'cyb': u'创业版', 'sz': u'深指'} df.rename(columns=col_mapping, inplace=True) output_file("histograms.html") hist = Histogram(df, bins=50, density=False, legend="top_right") show(hist)
5. 选取某三个行业中上市公司若干关键指标(市盈率,市净率等)的相关性
# -*- coding: utf-8 -*- from __future__ import print_function, division from __future__ import unicode_literals from collections import OrderedDict import numpy as np import pandas as pd import datetime as dt import seaborn as sns import tushare as ts from bokeh.charts import Bar, output_file, show cls = ts.get_industry_classified() stk = ts.get_stock_basics() cls = cls.set_index('code') tcls = cls[['c_name']] tstk = stk[['pe', 'pb', 'esp', 'bvps']] df = tcls.join(tstk, how='inner') clist = [df.ix[i]['c_name'] for i in xrange(3)] def neq(a, b, eps=1e-6): return abs(a - b) > eps tdf = df.loc[df['c_name'].isin(clist) & neq(df['pe'], 0.0) & \ neq(df['pb'], 0.0) & neq(df['esp'], 0.0) & \ neq(df['bvps'], 0.0)] col_mapping = {'pe' : u'P/E', 'pb' : u'P/BV', 'esp' : u'EPS', 'bvps' : u'BVPS'} tdf.rename(columns=col_mapping, inplace=True) sns.pairplot(tdf, hue='c_name', size=2.5)