OpenCV实现Gabor滤波(2)

对上一版的Gabor滤波代码进行了修改:

1) 将filter2D函数的ddepth参数值改为CV_64, 因为输入图像的类型是CV_8U, 而gabor kernel的类型是CV_64, 如果ddepth为默认值-1,计算的结果会有误差(为什么?)。

2) 修改了garbor kernel的参数,包括kernel_size 和 v的范围,都是为了适应不同图像的大小。v 越小,Gabor函数的宽度越小,越能刻画细节信息,适应于较小的图像。按照Mian Zhou的学位论文里的推荐,v的范围选择为-1到3,而kernel_size的确定公式为:

,对应v的kernel_size大小分别为19x19, 25x25, 35x35, 49x49, 69x69. 

我将所有kenel_size统一选为69x69。构建出的gabor bank如下图:



修改过的代码如下:

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <cmath>
#include <iostream>

using namespace cv;
using namespace std;

const double PI = 3.14159265;

// ref: http://blog.csdn.net/watkinsong/article/details/7876361
Mat getMyGabor(int width, int height, int U, int V, double Kmax, double f,
			   double sigma, int ktype, const string kernel_name)
{
	//CV_ASSERT(width % 2 == 0 && height % 2 == 0);
	//CV_ASSERT(ktype == CV_32F || ktype == CV_64F);

	int half_width = width / 2;
	int half_height = height / 2;
	double Qu = PI*U/8;
	double sqsigma = sigma*sigma;
	double Kv = Kmax/pow(f,V);
	double postmean = exp(-sqsigma/2);

	Mat kernel_re(width, height, ktype);
	Mat kernel_im(width, height, ktype);
	Mat kernel_mag(width, height, ktype);

	double tmp1, tmp2, tmp3;
	for(int j = -half_height; j <= half_height; j++){
		for(int i = -half_width; i <= half_width; i++){
			tmp1 = exp(-(Kv*Kv*(j*j+i*i))/(2*sqsigma));
			tmp2 = cos(Kv*cos(Qu)*i + Kv*sin(Qu)*j) - postmean;
			tmp3 = sin(Kv*cos(Qu)*i + Kv*sin(Qu)*j);

			if(ktype == CV_32F)
				kernel_re.at<float>(j+half_height, i+half_width) = 
				(float)(Kv*Kv*tmp1*tmp2/sqsigma);
			else
				kernel_re.at<double>(j+half_height, i+half_width) = 
				(double)(Kv*Kv*tmp1*tmp2/sqsigma);

			if(ktype == CV_32F)
				kernel_im.at<float>(j+half_height, i+half_width) = 
				(float)(Kv*Kv*tmp1*tmp3/sqsigma);
			else
				kernel_im.at<double>(j+half_height, i+half_width) = 
				(double)(Kv*Kv*tmp1*tmp3/sqsigma);
		}
	}

	magnitude(kernel_re, kernel_im, kernel_mag);

	if(kernel_name.compare("real") == 0)
		return kernel_re;
	else if(kernel_name.compare("imag") == 0)
		return kernel_im;
	else{
		printf("Invalid kernel name!\n");
		return kernel_mag;
	}
}

void construct_gabor_bank()
{
	const int kernel_size = 69;
	double Kmax = PI/2;
	double f = sqrt(2.0);
	double sigma = 2*PI;
	int U = 0;
	int V = 0;
	int GaborH = kernel_size;
	int GaborW = kernel_size;
	int UStart = 0, UEnd = 8;
	int VStart = -1, VEnd = 4;

	Mat kernel;
	Mat totalMat;
	for(U = UStart; U < UEnd; U++){
		Mat colMat;
		for(V = VStart; V < VEnd; V++){
			kernel = getMyGabor(GaborW, GaborH, U, V,
				Kmax, f, sigma, CV_64F, "real");

			//show gabor kernel
			normalize(kernel, kernel, 0, 1, CV_MINMAX);
			printf("U%dV%d\n", U, V);

			if(V == VStart)
				colMat = kernel;
			else
				vconcat(colMat, kernel, colMat);
		}
		if(U == UStart)
			totalMat = colMat;
		else
			hconcat(totalMat, colMat, totalMat);
	}

	imshow("gabor bank", totalMat);
	//normalize(totalMat, totalMat, 0, 255, CV_MINMAX);
	//totalMat.convertTo(totalMat, CV_8U);
	//imwrite("gabor_bank.jpg",totalMat);
	waitKey(0);
}

Mat gabor_filter(Mat& img, int type)
{
	// Ref: Mian Zhou. Thesis. Gabor-Boosting Face Recognition.
	// https://code.google.com/p/gaborboosting/
	const int kernel_size = 69; // should be odd
	// variables for gabor filter
	double Kmax = PI/2;
	double f = sqrt(2.0);
	double sigma = 2*PI;
	int U = 7;
	int V = 4;
	int GaborH = kernel_size;
	int GaborW = kernel_size;
	int UStart = 0, UEnd = 8;
	int VStart = -1, VEnd = 4;
	
	// 
	Mat kernel_re, kernel_im;
	Mat dst_re, dst_im, dst_mag;

	// variables for filter2D
	Point archor(-1,-1);
	int ddepth = CV_64F;//CV_64F
	double delta = 0;

	// filter image with gabor bank
	Mat totalMat, totalMat_re, totalMat_im;
	for(U = UStart; U < UEnd; U++){
		Mat colMat, colMat_re, colMat_im;
		for(V = VStart; V < VEnd; V++){
			kernel_re = getMyGabor(GaborW, GaborH, U, V,
				Kmax, f, sigma, CV_64F, "real");
			kernel_im = getMyGabor(GaborW, GaborH, U, V,
				Kmax, f, sigma, CV_64F, "imag");


			// normalize kernel ????
			//normalize(kernel_re, kernel_re, 0, 255, CV_MINMAX);
			//normalize(kernel_im, kernel_im, 0, 255, CV_MINMAX);

			// flip kernel
			// Gabor kernel is symmetric, so do not need flip
			//flip(kernel_re, kernel_re, -1);
			//flip(kernel_im, kernel_im, -1);

	
			filter2D(img, dst_re, ddepth, kernel_re);
			filter2D(img, dst_im, ddepth, kernel_im);

			dst_mag.create(img.rows, img.cols, CV_64FC1);
			magnitude(Mat_<float>(dst_re),Mat_<float>(dst_im), 
				dst_mag);

			//show gabor kernel
			normalize(dst_mag, dst_mag, 0, 1, CV_MINMAX);
			normalize(dst_re, dst_re, 0, 1, CV_MINMAX);
			normalize(dst_im, dst_im, 0, 1, CV_MINMAX);
			

			if(V == VStart){
				colMat = dst_mag;
				colMat_re = dst_re;
				colMat_im = dst_im;
			}
			else{
				vconcat(colMat, dst_mag, colMat);
				vconcat(colMat_re, dst_re, colMat_re);
				vconcat(colMat_im, dst_im, colMat_im);
			}
		}
		if(U == UStart){
			totalMat = colMat;
			totalMat_re = colMat_re;
			totalMat_im = colMat_im;
		}
		else{
			hconcat(totalMat, colMat, totalMat);
			hconcat(totalMat_re, colMat_re, totalMat_re);
			hconcat(totalMat_im, colMat_im, totalMat_im);
		}
	}

	// return 
	switch(type){
		case 0:
			return totalMat;
		case 1:
			return totalMat_re;
		case 2:
			return totalMat_im;
		default:
			return totalMat;
	}
}

int main( int argc, char** argv )
{
	//construct_gabor_bank();
	//return 0;

	if(3 != argc){
		printf("Usage: %s <image_path> <type>", argv[0]);
		exit(1);
	}
	string image_name(argv[1]);
	int type = atoi(argv[2]);

	Mat image;
	image = imread(image_name, 0); // Read the file

	if(! image.data ) // Check for invalid input
	{
		cout << "Could not open or find the image" << std::endl ;
		return -1;
	}

	Mat filterd_image = gabor_filter(image, type);
	imshow("origin image", image);
	imshow("filtered image", filterd_image);
	//normalize(filterd_image, filterd_image, 0, 255, CV_MINMAX);
	//filterd_image.convertTo(filterd_image, CV_8U);
	//imwrite("filterd_image.jpg",filterd_image);
	
	waitKey(0);

	return 0;
}

原图:


滤波结果:

OpenCV实现Gabor滤波(2)_第1张图片

可以与上一篇OpenCV实现Gabor滤波 的结果做对比

参考:Mian Zhou. Thesis. Gabor-Boosting Face Recognition. 从https://code.google.com/p/gaborboosting/source/checkout 可以下载到论文及代码。CSDN上大部分Gabor滤波代码都出自这位仁兄。

你可能感兴趣的:(OpenCV实现Gabor滤波(2))