MATRIX COMPLETION PAPERS

最近在看Matrix Completion相关的文章,本来想自己总结一下,看到这里总结的不错就转载过来了。

http://www.svt.caltech.edu/

MATRIX COMPLETION PAPERS

We distinguish two types of matrix completion: matrix completion when a subset of entries is observed, and matrix completion when a linear functional of the entire matrix is observed. SVT, and the papers below, deal with the first type; for an introduction to the latter type (which is in some sense an extension of compressed sensing), Guaranteed minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , by Recht, Fazel and Parrilo, is a good place to start.

Theory:

  • Exact matrix completion via convex optimization by E. J. Candès and B. Recht (2008).
  • Necessary and Sufficient Condtions for Success of the Nuclear Norm Heuristic for Rank Minimization , by B. Recht, W. Xu and B. Hassibi (2008). The extended technical report has full proofs.
  • The power of convex relaxation: Near-optimal matrix completion , by E. Candès and T. Tao (2009).
  • Matrix completion with noise , by E. J. Candès and Y. Plan (2009).

Algorithms:

  • A singular value thresholding algorithm for matrix completion by J-F. Cai, E. J. Candès and Z. Shen (2008).
  • Fixed point and Bregman iterative methods for matrix rank minimization by S. Ma, D. Goldfarb and L. Chen (2008).
  • Interior-point method for nuclear norm approximation with application to system identification by Z. Lui and L. Vandenberghe (2008).
  • Matrix Completion from a Few Entries , by R. Keshavan, A. Montanari, and S. Oh (2009).
  • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems by K. Toh and S. Yun (2009).

你可能感兴趣的:(Algorithm,application,extension,Matrix,methods,optimization)