Cairo 图形指南 (4) —— 裁剪与遮蔽

在这一篇中讲述裁剪(Clipping)与遮蔽(Masking)。

裁剪

在下面的示例中,对一幅图像进行裁剪。


#include <cairo.h>
#include <gtk/gtk.h>
#include <math.h>
 
cairo_surface_t *image;
 
staticgboolean
on_expose_event(GtkWidget *widget,
    GdkEventExpose *event,
    gpointer data)
{
  cairo_t *cr;
 
  staticgint pos_x = 128;
  staticgint pos_y = 128;
  gint radius = 40; 
 
  staticgint delta[] = { 3, 3 };
 
  cr = gdk_cairo_create(widget->window);
 
  gint width, height;
  gtk_window_get_size(GTK_WINDOW(widget), &width, &height);
 
  if(pos_x < 0 + radius) {
      delta[0] =rand() % 4 + 5;
  }else if (pos_x > width - radius) {
      delta[0] = -(rand() % 4 + 5);
  }
 
  if(pos_y < 0 + radius) {
      delta[1] =rand() % 4 + 5;
  }else if (pos_y > height - radius) {
      delta[1] = -(rand() % 4 + 5);
  }
 
  pos_x += delta[0];
  pos_y += delta[1];
 
  cairo_set_source_surface(cr, image, 1, 1);
  cairo_arc(cr, pos_x, pos_y, radius, 0, 2*M_PI);
  cairo_clip(cr);
  cairo_paint(cr);
 
  cairo_destroy(cr);
 
  returnFALSE;
}
 
staticgboolean
time_handler (GtkWidget *widget)
{
  if(widget->window == NULL) returnFALSE;
  gtk_widget_queue_draw(widget);
  returnTRUE;
}
 
int main(int argc,char *argv[])
{
  GtkWidget *window;
  gint width, height; 
 
  image = cairo_image_surface_create_from_png("turnacastle.png");
  width = cairo_image_surface_get_width(image);
  height = cairo_image_surface_get_height(image);
 
 
  gtk_init(&argc, &argv);
 
  window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
 
  g_signal_connect(G_OBJECT(window),"expose-event",
      G_CALLBACK(on_expose_event), NULL);
  g_signal_connect(G_OBJECT(window),"destroy",
      G_CALLBACK(gtk_main_quit), NULL);
 
  gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
  gtk_window_set_default_size(GTK_WINDOW(window), width+2, height+2);
 
  gtk_widget_set_app_paintable(window, TRUE);
  gtk_widget_show_all(window);
  g_timeout_add(100, (GSourceFunc) time_handler, (gpointer) window);
 
  gtk_main();
 
  cairo_surface_destroy(image);
 
  return0;


在这一示例中,在窗口中会有一个圆形区域不断移动,并且在该区域显示位于其下的图像,仿佛是通过一个孔洞观看图像。


if (pos_x < 0 + radius) {
     delta[0] = rand () % 4 + 5;
} else if (pos_x > width - radius) {
     delta[0] = -( rand () % 4 + 5);
}

当这个圆形区域碰到窗口边界,它的移动方向就会随机改变。


cairo_set_source_surface(cr, image, 1, 1);
cairo_arc(cr, pos_x, pos_y, radius, 0, 2*M_PI);

这里是绘制一幅图像和一个圆。注意:这时,图形尚未绘制到窗口中,它们还在内存里。


cairo_clip(cr);

cairo_clip() 函数设定裁剪域——当前所用的路径,即 cairo_arc() 函数所创建的路径。


cairo_paint(cr);

cairo_paint() 函数绘制当前落入裁剪域中的源。

裁剪矩形

下面这个示例是对一个 Java 2D 示例的模拟。

#include <cairo.h>
#include <gtk/gtk.h>
#include <math.h>
 
 
staticgboolean
on_expose_event(GtkWidget *widget,
    GdkEventExpose *event,
    gpointer data)
{
  cairo_t *cr;
  cr = gdk_cairo_create(widget->window);
 
  staticgboolean xdirection = TRUE;
  staticgint counter = 0;
 
  intwidth, height;
  gtk_window_get_size(GTK_WINDOW(widget), &width, &height);
 
  staticgdouble rotate = 0;
 
  staticgint bigx = 20;
  staticgint bigy = 200;
  staticgint delta = 1;
 
  counter += 1; 
 
 
  if(bigx > width) {
      xdirection = FALSE;
      delta = -delta;
      bigx = width;
  }
 
  if(bigx < 1) {
      bigx = 1;
      delta = -delta;
  }
 
  if(bigy > height) {
      xdirection = TRUE;
      delta = -delta;
      bigy = height;
  }
 
  if(bigy < 1) {
      delta = -delta;
      bigy = 1;
  }
 
  if(xdirection) {
      bigx += delta;
  }else {
      bigy += delta;
  }
 
  cairo_translate(cr, width / 2, height /2);
 
  cairo_rectangle(cr, -bigx/2, -bigy/2, bigx-2, bigy-2);
  cairo_set_source_rgb(cr, 0, 0, 0);
  cairo_set_line_width(cr, 1); 
  cairo_stroke(cr);
 
  cairo_rotate(cr, rotate);
  rotate += 0.01;
 
  cairo_rectangle(cr, -50, -25, 100, 50);
  cairo_stroke(cr);
 
  GdkRectangle bigrect;
  GdkRectangle rect;
  GdkRectangle intersect;
 
  bigrect.x = -bigx/2;
  bigrect.y = -bigy/2;
  bigrect.width = bigx -2;
  bigrect.height = bigy -2;
 
  rect.x = -50;
  rect.y = -25;
  rect.width = 100;
  rect.height = 50;
 
  gdk_rectangle_intersect(&bigrect, &rect, &intersect);
  cairo_rectangle(cr, intersect.x, intersect.y, intersect.width, intersect.height);
  cairo_fill(cr);
 
  cairo_destroy(cr);
 
  returnFALSE;
}
 
staticgboolean
time_handler (GtkWidget *widget)
{
  if(widget->window == NULL) returnFALSE;
  gtk_widget_queue_draw(widget);
  returnTRUE;
}
 
int
main (intargc, char *argv[])
{
 
  GtkWidget *window;
 
  gtk_init(&argc, &argv);
 
  window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
 
  g_signal_connect(G_OBJECT(window),"expose-event",
      G_CALLBACK(on_expose_event), NULL);
  g_signal_connect(G_OBJECT(window),"destroy",
      G_CALLBACK(gtk_main_quit), NULL);
 
  gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
  gtk_window_set_default_size(GTK_WINDOW(window), 250, 200);
 
  gtk_widget_set_app_paintable(window, TRUE);
  gtk_widget_show_all(window);
  g_timeout_add(5, (GSourceFunc) time_handler, (gpointer) window);
 
  gtk_main();
 
  return0;
}



在这个示例中,绘制了两个矩形,一个是形状大一些的,一个是在旋转的。大点的那个矩形,持续的在进行形状的缩放,小一点的一直在旋转。在两个矩形的运动过程中进行了交集操作,它们的相交区域用黑色区域来绘制。注意:那个相交区域并非恰好是矩形,只是为了简化,将那个区域用矩形近似替代。


static gboolean xdirection = TRUE;

这个变量决定了那个大一些的矩形的运动方向。


if (bigx > width) {
     xdirection = FALSE;
     delta = -delta;
     bigx = width;
}

如果那个大的矩形,其宽度增长到与窗口的宽度相等时,就开始收缩,同时矩形开始沿 y 方向收缩。


cairo_rotate(cr, rotate);

cairo_rotate() 函数用来旋转那个小一点的矩形。

GdkRectangle bigrect;
GdkRectangle rect;
GdkRectangle intersect;

这里定义了三个矩形区域。insersect 是那两个矩形的相交区域。


gdk_rectangle_intersect(&bigrect, &rect, &intersect);

这个函数可完成矩形相交运算。


cairo_rectangle(cr, intersect.x, intersect.y, intersect.width, intersect.height);
cairo_fill(cr);

绘制相交区域的矩形。

 

遮蔽

因为在源被用于外观之前,首先要被过滤。遮蔽可作为一种过滤器。遮蔽用于决定源的哪部分要被显示,哪部分不可被显示。遮蔽的不透明部分允许将源复制到外观,透明部分则不允许将源复制给外观。

 

#include <cairo.h>
#include <gtk/gtk.h>
 
 
staticgboolean
on_expose_event(GtkWidget *widget,
    GdkEventExpose *event,
    gpointer data)
{
  cairo_t *cr;
  cairo_surface_t *surface;
 
  cr = gdk_cairo_create(widget->window);
 
  cairo_set_source_rgb(cr, 0, 0, 0);
 
  surface = cairo_image_surface_create_from_png("omen.png");
  cairo_mask_surface(cr, surface, 0, 0);
  cairo_fill(cr);
 
  cairo_surface_destroy(surface);
  cairo_destroy(cr);
 
  returnFALSE;
}
 
 
int main(int argc,char *argv[])
{
  GtkWidget *window;
 
  gtk_init(&argc, &argv);
 
  window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
 
  g_signal_connect(G_OBJECT(window),"expose-event",
      G_CALLBACK(on_expose_event), NULL);
  g_signal_connect(G_OBJECT(window),"destroy",
      G_CALLBACK(gtk_main_quit), NULL);
 
  gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
  gtk_window_set_default_size(GTK_WINDOW(window), 305, 100);
 
  gtk_window_set_title(GTK_WINDOW(window),"mask");
  gtk_widget_set_app_paintable(window, TRUE);
  gtk_widget_show_all(window);
 
  gtk_main();
 
  return0;
}


 

这个小例子清楚的展示了遮蔽的基本思想。


surface = cairo_image_surface_create_from_png( "omen.png" );
cairo_mask_surface(cr, surface, 0, 0);
cairo_fill(cr);

这里,是用了一幅图像作为遮蔽,然后在窗口中显示它。


你可能感兴趣的:(image,object,callback,图形,Signal,gtk)