顺便复习了下部分排序

这两天趁复习算法之际,顺便实现了下插入、合并、堆和快速排序。不解释,贴点代码算是给自己留下备日后复习。

 

/**
	 * Sort the array of a
	 * Just like a number of n cards on the desk, you pick one by one, each time you pick up one card, insert into the correct place into the cards in your hand
	 * @param <T>
	 * @param a
	 */
	@SuppressWarnings("unchecked")
	public static <T extends Comparable<?>> T[] insertSort(T[] a){
		if( a == null || a.length == 0 )
			return null;
		for( int i = 1; i < a.length; ++i){
			T key = a[i];
			int j = i - 1;
			while( j >= 0 &&  ((Comparable)a[j]).compareTo(key) > 0 ){
					//if a[j] > key
					a[j+1] = a[j];
					j--;
			}
			a[j+1] = key;
		}
		return a;
	}

 

 

 

public static <T extends Comparable<?>> void mergeSort(T[] a, int low, int high){
		if( low < high){
			int q = (low + high) / 2;//(0+3)/2 = 1   a,0,1 ==> q = 0 a 00,11   a,2,3
			mergeSort(a,low,q);
			mergeSort(a,q+1,high);
			merge(a,low,q,high);
		}
	}
	/**
	 * Merge two sorted sub arrays into a whole array
	 * Suppose the sub arrays a[p,p+1,...q] and a[q+1,q+2,...r] are the sorted arrays
	 * Merge these two sub arrays into the whole array T[] a to make it sorted array 
	 */
	@SuppressWarnings("unchecked")
	public static <T extends Comparable<?>>void merge(T[] a, int p, int q, int r){
		int n1 = q - p + 1;
		int n2 = r - q;
		
		T[] L = (T[]) Array.newInstance(Comparable.class, n1);
		for( int i = 0; i < n1; i++)
			L[i] = a[p+i];
		
		T[] R = (T[]) Array.newInstance(Comparable.class, n2);
		for( int i = 0; i < n2; i++)
			R[i] = a[q+1+i];
		
		int i = 0, j = 0, k = p;
		while( k < r && i < n1 && j < n2){
			if( ((Comparable)L[i]).compareTo(R[j]) < 0 ){
				//L[i] < R[j]
				a[k] = L[i];
				i++;
			}else{
				a[k] = R[j];
				j++;
			}
			k++;
		}
		if( i >= n1){
			while( j < n2){
				a[k] = R[j];
				k++;
				j++;
			}
		}
		if( j >= n2 ){
			while( i < n1 ){
				a[k] = L[i];
				k++;
				i++;
			}
		}
	}

 public static <T extends Comparable<?>> void heapSort(T[] a){

		buildMaxHeap(a);
		for( int i = 1; i < a.length; ++i){
			swap(a,1,a.length - i);//注意这里是1 不是i
			maxHeapify(a, 1, a.length - i - 1 );//是1
		}
	}
	
	public static <T extends Comparable<?>> void swap(T[] a, int i, int j){
		T temp = a[i];
		a[i] = a[j];
		a[j] = temp;
	}
	/**
	 * 给定一个数组,构建一个大顶堆
	 * 对于满二叉树,子数组a[length/2 + 1],....a[length] 为叶子节点,
	 * 所以只要从a[length/2]开始直至a[1],一次进行对调整即可
	 * @param <T>
	 * @param a
	 */
	public static <T extends Comparable<?>> void buildMaxHeap(T[] a){
		for( int i = (a.length-1)/2; i > 0; i--){
			maxHeapify(a,i, a.length - 1);
		}
	}
	
	/**
	 * 保持大顶堆操作
	 * 假设a中第i个元素为根的子树不符合打顶堆性质
	 * 思想:比较i和两个子女,若子女中最大者比i大,则交换之,继续以交换的子女为根调整
	 * @param <T>
	 * @param a
	 * @param i
	 */
	@SuppressWarnings("unchecked")
	public static <T extends Comparable<?>> void maxHeapify(T[] a, int i, int heapSize){
		int largest = -1;
		int left = i<<1;
		int right = left+1;
		if( left <= heapSize && ((Comparable)a[left]).compareTo(a[i]) > 0){
			largest = left;
		}else{
			largest = i;
		}
		
		if( right <= heapSize && ((Comparable)a[right]).compareTo(a[largest]) > 0){
			largest = right;
		}
		
		if( largest != i ){
			T tmp = a[i];
			a[i] = a[largest];
			a[largest] = tmp;
			maxHeapify(a, largest, heapSize);
		}
	}

 public static <T extends Comparable<?>> void quickSort(T[] a, int p, int r){

		if( p < r ){
			int q = partition(a, p, r);
			quickSort(a,p,q-1);
			quickSort(a,q+1,r);
		}
	}
	
	@SuppressWarnings("unchecked")
	public static <T extends Comparable<?>> int partition(T[] a, int p, int r){
		T x = a[r];
		/**
		 * i 用来指明当前比a[r]小得区域,初始状态该区域为空,所以置初始值 i = p - 1
		 * j 用来指示当前扫描到的元素,从p开始扫描,初始值 j = p
		 * 当发现a[j]比a[r]小或等,则把a[j]放到i指示的区域:很简单,先i自增即找到大于a[r]的区域中第一个元素,然后交换a[i]和a[p],做完以后,i的区域增加了一个小于a[r]的元素
		 * 最后,a[i+1]即位x的位置
		 */
		int i = p - 1;
		for(int j = p; j < r; ++j){
			if(((Comparable)a[j]).compareTo(x) <= 0){
				HeapSortor.swap(a, ++i, j);
			}
		}
		HeapSortor.swap(a,i+1,r);
		return i+1;
	}
 

 

你可能感兴趣的:(排序)