- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- ros 机器人地图转化为gis地图
Sunday_ding
问题集地图arcgisjava图论
ROS(RobotOperatingSystem)和CloudLibrary的结合可以通过生成的文件构建地理信息系统(GIS),尤其是当涉及到机器人、传感器数据以及地图构建时。下面将详细说明ROS和CloudLibrary如何生成的数据文件能够被用来构建GIS系统,以及如何通过这些数据进一步进行地理空间分析。1.ROSCloudLibrary生成的文件ROS提供了多种与地图构建和机器人定位相关的工
- 基于python的时空地理加权回归(GTWR)模型
有梦想的Frank博士
数据处理数据分析回归空间分析时空异质性
一、时空地理加权回归(GTWR)模型时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的AndyLiaw、StanleyA.Fiel和MichaelE.Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR)模型的基础上发展起来的,通过结合时间和空间两个维度,提供了一种更为灵活和精确的时空数据分析手段。背景和发展传统的地理加权回归(GWR)模型主要关注地理空间上的
- Javascript(turfjs)等值线图绘制
前端空间计算mapbox
使用气象、环境类空间数据绘制等值线通常是由NCL、Python来做,在一些场景中:你只是想在WEB端做一些简单的绘制你的后端只有Node.js环境你纯粹是个前端工程师你也许需要使用纯Javascript来做这件事。本文尝试根据空间中的一组散点来绘制等值线图(或色斑图)。1.准备工作turfjs,空间分析(geospatialanalysis)工具包,支持在浏览器和Node.js环境中运行,空间数据
- GEE 将本地 GeoJSON 文件上传到谷歌资产
ThsPool
GISjavaandroid前端envigis
在地理信息系统(GIS)领域,GoogleEarthEngine(GEE)是一个强大的平台,它允许用户处理和分析大规模地理空间数据。本文将介绍如何使用Python脚本批量上传本地GeoJSON文件到GEE资产存储,这对于需要将地理数据上传到GEE进行进一步分析的用户来说非常有用。应用场景数据集成:将本地GeoJSON数据集成到GEE中,以便进行更复杂的地理空间分析。数据共享:与团队成员共享GeoJ
- R 地图绘制-比例尺与指北针
jamesjin63
ggplot绘制mapR语言可以进行数据分析,也可以进行地图绘制,而且非常简洁,快速。虽然Arcgis基于桌面可视化操作,能够进行空间分析,但是唯一不足的就是操作步骤繁琐而且一不小心,就要从头再来,可重复性较低。这篇文章主要讲述如何利用R语言中的ggplot与sf绘制带有指北针、图列与标尺的地图屏幕快照2020-06-28下午9.27.59.png数据我们下载非洲地区54个国家的图层Afirca.
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- 2021-10-06
多去看看
下载完数据后,一用do.call(dplyr::bind_rows,diagnose)然后去clinical$demographic两者用patient_id合并,可以得到数据现在做单因素分析,然后lasso回归分析已经得到数据表,单因素分析需要什么?似乎需要的数据不多,看看怎么弄做单因素分析:基因表达值,生存状态:死亡或者存活,生存时间那剩下的那些是个什么鬼生存分析,生存时间,生存状态生存分析模
- 开源GIS与Vue结合
桃子味的白开水
相关插件安装推荐使用npm的方式安装,它能更好地和webpack打包工具配合使用。¶1、ol-----OpenLayers地图操作基础包
[email protected]¶2、ol-ext-----OpenLayers扩展包npminstallol-ext¶3、proj4------前端投影转换包npminstallproj4¶4、turf------前端空间分析包npminstall@tur
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- statsmodels专栏7——深度探索:Python中的Statsmodels库因果推断
theskylife
数据分析数据挖掘python数据分析数据挖掘机器学习人工智能
目录写在开头1差分法1.1差分法的基本原理1.2使用Statsmodels进行差分法分析2断点回归分析2.1断点回归分析的概念2.1.1基本思想2.1.2断点回归数学模型2.1.3实现原理2.2利用Statsmodels进行断点回归分析3仪器变量法3.1仪器变量法的基本概念3.2仪器变量法的数学原理3.3仪器变量法的一般步骤3.4使用Statsmodels进行仪器变量法建模3.5仪器变量法与多元线
- 矢量数据的空间分析——叠加分析
进击的码农设计师
叠加分析是对不同的数据进行一系列的集合运算,常用于提取要素的空间隐含信息。1.擦除分析:擦除分析是将输入要素中去除掉与擦除要素的多边形相交的部分,将输入要素处于擦除要素外部边界之外的部分输出到新要素类。打开【系统工具箱→AnalysisTools→叠加分析→擦除】工具,设置输入要素和擦除要素。2.相交分析:相交分析是对输入要素做几何交集操作,输入要素可以是各种几何类型要素(点、线、面)的组合。打开
- 机器学习:svm算法原理的优缺点和适应场景
夜清寒风
支持向量机算法机器学习
1、概述:基本原理:间隔(Margin):SVM试图找到一个超平面,这个超平面不仅能够区分不同的类别,而且具有最大的间隔。间隔是数据点到超平面的最近距离。支持向量(SupportVectors):这些是距离超平面最近的数据点,它们决定了超平面的位置和方向。支持向量机(SVM)是一种在机器学习领域广泛使用的监督学习模型,它通过找到数据点之间的最优超平面来进行分类或回归分析。以下是SVM算法的一些优缺
- 应急智能调度模型思考(21.9.13)
次第前行
应急智能化调度模型,基于各类实时感知数据、历史灾情、重要承灾体数据、重点隐患数据、防灾减灾能力数据、视频影像资料、交通路况信息、实时报送信息,整合汇水模型、城市内涝计算模型、AI影像识别技术、空间分析技术、风险定性定量计算模型,生成以及调度决策,实时汇聚到应急指挥大屏,帮助指挥中心开展工作。系统通过对气象降雨、河道水位、重点区域影像资料的实时监测,结合历史灾情数据相关的积水深度、积水面积、降雨量、
- 回归分析系列22— 稳健回归
技术与健康
线性回归
23章稳健回归23.1简介稳健回归是一种在数据中存在异常值或噪声时,依然能够提供合理估计的回归方法。传统的线性回归对异常值非常敏感,因为它最小化的是平方误差。这意味着大的离群点会对回归系数产生很大影响。23.2常见的稳健回归方法稳健回归方法通过对异常值降低权重,或者对损失函数进行修正,以减少这些点对模型的影响。常见的稳健回归方法包括:M估计:通过改变损失函数,使得它对异常值不敏感。RANSAC:随
- 机器学习——逻辑回归
wsdswzj
机器学习逻辑回归人工智能
目录一、逻辑回归1.1、模型原理1.2、损失函数二、实例2.1、定义sigmoid函数2.2、数据集2.3、梯度上升算法2.4、预测函数2.5、绘画函数三、代码运行结果:四、总结优点:缺点:一、逻辑回归逻辑回归是一种广义的线性回归分析模型,用于解决二分类或多分类问题。逻辑回归模型,尽管名字中包含“回归”二字,实际上是一种分类方法,特别是用于处理二分类问题。它通过将线性回归的结果通过某种函数映射到(
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- 优化的热点分析与异常值分析:让数据分析更加便捷高效
杨超越luckly
ArcGIS日常分享数据分析大数据数据库arcgis数据挖掘
热点分析作为一种常用的空间统计方法,能够帮助我们识别地理空间中的热点和冷点区域,即那些高值或低值集中出现的地方。而优化的热点分析进一步简化了这一过程,使用户无需手动调整参数即可获得可靠的结果。此外,异常值分析则专注于发现那些与周围区域显著不同的地点,这些异常值往往能揭示出有趣的现象或问题所在,同样的优化的异常值分析也简化了这一过程,使用户无需手动调整参数即可获得可靠的结果。到底哪些数据需要做热点分
- 回归分析系列6-多层次回归
技术与健康
回归分析人工智能机器学习回归
08多层次回归8.1简介多层次模型(也称为分层模型或混合效应模型)用于处理具有层次结构的数据。它们允许在回归模型中同时考虑多个层次(如学校中的学生、不同时间点的个体等)的影响,并且能处理组内和组间的变异性。在多层次回归中,模型通常包括固定效应和随机效应。固定效应表示全局效应,适用于所有组,而随机效应表示特定组的偏差。8.2多层次模型的示例考虑一个教育数据集,其中有来自多个学校的学生成绩数据。我们的
- regression机器学习回归预测模型参考学习后自我总结
饮啦冰美式
机器学习回归学习
简单来说,就是将样本的特征矩阵映射到样本标签空间。回归分析帮助我们理解在改变一个或多个自变量时,因变量的数值会如何变化。线性模型线性回归用于建立因变量和一个或多个自变量之间的线性关系模型。在线性回归中,假设因变量(被预测变量)与自变量(预测变量)之间存在着线性关系,也就是说,因变量的数值可以通过自变量的线性组合来预测。普通最小二乘线性回归。通过最小化实际观测值与模型预测值之间的误差平方和,可以找到
- python可以构建sem模型_结构方程模型(SEM)可用于微生态研究及R语言实现
weixin_39650139
python可以构建sem模型
导读结构方程模型(StructuralEquationModeling,SEM)是一种能基于变量之间的协方差矩阵分析多变量之间结构关系的多元统计分析方法,也被称为协方差结构模型。该方法是因子分析和多元回归分析的结合,可用于分析被测变量与潜在变量之间的结构关系,替代多重回归、通径分析、因子分析、协方差分析等分析方法。结构方程模型能在一次分析中估计多个相互关联的变量之间的依赖关系而受到研究者的青睐。早
- 岭回归算法
码银
回归数据挖掘人工智能
回归分析方法是利用数理统计方法分析数据,建立自变量和因变量间的回归模型,用于预测因变量变化的分析方法。其中比较经典的是HoerI和Kennard提出的岭回归算法。岭回归算法是在最小二乘法的基础上引|入正则项,使回归模型具有较好泛化能力和稳定性,但岭回归算法并不能处理自变量间非线性相关的情况。岭回归,又称脊回归,是对不适定问题进行回归分析时经常使用的一种正则化方法,是对最小二乘回归的一种补充,岭回归
- Topic 10. 单因素 Logistic 回归分析—单因素分析表格
90066456ace6
上期学习了怎样汇总单因素Cox回归的结果,这期学习单因素Logistic回归分的汇总,由于使用的是coxph和glm两个函数结果的展示有所不同,因此整理过程略有不同,但是提取的信息是一致的。01单因素Logistic回归分析方法Logistic回归模型是一种概率模型它是以某一事件发生与否的概率P为因变量,以影响P的因素为自变量建立的回归模型,分析某事件发生的概率与自变量之间的关系,是一种非线性回归
- 麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测,麻雀优化算法改进BP神经网络客流量预测
神经网络机器学习智能算法画图绘图
BP神经网络算法神经网络回归麻雀优化算法改进BP神经网络短期客流量预测
目录背影BP神经网络的原理BP神经网络的定义BP神经网络的基本结构BP神经网络的神经元BP神经网络的激活函数,BP神经网络的传递函数麻雀算法原理麻雀算法主要参数麻雀算法流程图麻雀算法优化测试函数代码麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测数据matlab编程实现效果图结果分析展望完整代码数据文件下载链接:(代码完整,数据齐全)资源-CSDN文库https://downlo
- 基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab
机器不会学习CSJ
算法深度学习
01基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab基础知识:基于WOA-CNN-LSTM-Attention的数据回归算法是一种利用深度学习技术来进行数据回归分析的方法。它结合了WOA(WhaleOptimizationAlgorithm)、CNN(ConvolutionalNeuralNetwork)、LSTM(LongSh
- 数据分析方法论和分析法
水调歌头_f072
数据分析方法论:指数据分析思路,用于指导数据分析师进行数据分析。例如:4P、5W2H、逻辑树等分析思路。数据分析法:具体的分析方法。例如交叉分析、相关分析、回归分析、对比分析、聚类分析等。分析工具:EXcel、SPSS、SAS等
- vue3结合openlayers,geoserver实现GIS一张图(WebGIS)
GIS小小白
javascriptvue.js前端arcgispostgresqlweb
一.前言不知不觉一年又要过去了,接触开发也就是这几个月的事情,感觉时间过的真快,今天就是除夕了,祝各位新年快乐呀,话说回来,其实在接触学习WebGIS的过程中还是蛮迷茫的,自己虽然是地信的学生,对于地理方面还有有一些自己的理解,但平时专业课学习的就是arcgis空间分析,遥感图像处理,WebGIS的部分并不是太重视,可能是因为没有那么多时间,毕竟这需要扎实的前端技能,不是一朝一夕就可以说明白的,当
- 葡萄酒价格的计算公式,记住这个就能算出这支酒值多少钱
cchuen
一般来说,酒评家们对葡萄酒的评分,往往是需要建立在亲自品鉴过的基础上,但罗伯特帕克却不同,除了品鉴以外,他甚至可以凭借气象数据就对葡萄酒的品质有个评判。不过,普林斯顿大学计量经济学家奥利阿什菲尔特教授通过研究1952年~1980年期间波尔多地区的气象资料,对照拍卖行的波尔多葡萄酒价格曲线,利用计量经济学上的横截面数据回归分析法,推导出一条葡萄酒品质公式:葡萄酒品质=12.145+0.00117×冬
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option