大致题意:
给出一个字符串,求出这个字符串中最长的回文串。如果有多个回文串的长度相等且都是最大,则输出最靠前的那个。
大致思路:
首先肯定是要把原字符的逆序串接到原字符串的后面。然后便是从0~~len扫描这个字符串,假设第i个位置是一个回文的中心,然后求出i个i对应位置的lca的最大值即可。每次枚举时要分奇偶两种情况考虑。
献上两组数据:qweRTYewq zzzdzaadzzz
#include<iostream> #include<cstdio> #include<vector> #include<cstring> using namespace std; const int nMax =1000012; int num[nMax]; int sa[nMax], rank[nMax], height[nMax]; int wa[nMax], wb[nMax], wv[nMax], wd[nMax]; int cmp(int *r, int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int *r, int n, int m){ // 倍增算法 r为待匹配数组 n为总长度 m为字符范围 int i, j, p, *x = wa, *y = wb, *t; for(i = 0; i < m; i ++) wd[i] = 0; for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++; for(i = 1; i < m; i ++) wd[i] += wd[i-1]; for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p){ for(p = 0, i = n-j; i < n; i ++) y[p ++] = i; for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j; for(i = 0; i < n; i ++) wv[i] = x[y[i]]; for(i = 0; i < m; i ++) wd[i] = 0; for(i = 0; i < n; i ++) wd[wv[i]] ++; for(i = 1; i < m; i ++) wd[i] += wd[i-1]; for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){ x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++; } } } void calHeight(int *r, int n){ // 求height数组。 int i, j, k = 0; for(i = 1; i <= n; i ++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i ++]] = k){ for(k ? k -- : 0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k ++); } } int Log[nMax]; int best[20][nMax]; void initRMQ(int n) {//初始化RMQ for(int i = 1; i <= n ; i ++) best[0][i] = height[i]; for(int i = 1; i <= Log[n] ; i ++) { int limit = n - (1<<i) + 1; for(int j = 1; j <= limit ; j ++) { best[i][j] = min(best[i-1][j] , best[i-1][j+(1<<i>>1)]); } } } int lcp(int a,int b) {//询问a,b后缀的最长公共前缀 a = rank[a]; b = rank[b]; if(a > b) swap(a,b); a ++; int t = Log[b - a + 1]; return min(best[t][a] , best[t][b - (1<<t) + 1]); } char str[nMax]; int main(){ int i,j,n,cas=0,len; Log[0] = -1; for(int i=1;i<=nMax;i++){ Log[i]=(i&(i-1))?Log[i-1]:Log[i-1] + 1 ; } while(scanf("%s",str)!=EOF){ len=strlen(str); n=0; for(i=0;i<len;i++){ num[n++]=str[i]; } num[n++]=126; for(i=len-1;i>=0;i--){ num[n++]=str[i]; } num[n]=0; da(num, n + 1,130); calHeight(num,n); initRMQ(n); int start,ans=1,tmp; for(i=0;i<len;i++){ tmp=lcp(i,n-i-1); ///首先考虑回文长度是奇数的情况 if(tmp*2-1>ans){ ans=tmp*2-1; start=i-tmp+1; } tmp=lcp(i,n-i); ///考虑回文长度是偶数的情况 if(tmp*2>ans){ ans=tmp*2; start=i-tmp; } } if(ans==1)printf("%c\n",str[0]); else{ for(i=start;i<start+ans;i++){ printf("%c",str[i]); }printf("\n"); } } return 0; }