1 10 2 3 4 4 3 2 2 3 4 4
Case #1: 9
题意:给你一个具有n个元素的整数序列,问你是否存在这样一个子序列,该子序列分为三部分,第一部分与第三部分相同,第二部分与第一部分对称(例如2 3 4 4 3 2 2 3 4 显而易见,蓝色部分与绿色部分是相同的,而蓝色部分与粉色部分是对称的),要求给出形如所述的最长连续子序列。
放入出题人的解题报告
其次,我们来观察一下所给的例子,所谓的对称可以理解为是一个偶数长的回文串,于是,很容易就想到了用时间复杂度为O(n)的Manacher算法来处理回文串的长度问题,(一种计算最长回文子串的时间复杂度为O(n)的算法,想要学习一下的点链接吧Manacher算法),于是就拉了一下模板。
我们只需要判断两个相邻的回文串是否共享之间的一部分,就可以判断该子序列是否是题意规定的子序列。
于是傻乎乎地简单判了一下p[i]-1是否小于等于p[i+p[i]-1]-1,然后样例过了就以为对了,于是收获到了WA一枚
且看一组例子,就会明白仅仅如此是不正确的
10
1 2 4 4 5 5 4 4 5 5
此例子对应的p数组-1后为
0 0 2 0 6 0 6 0 2
此例子结果为6,这便与原来的想法有了矛盾。但我们只需要多添加一步暴力枚举p[i]--的情况,便又解决了一个难题。
具体做法:
(1)p[i]记录的是以i为中心,从i-p[i]+1到i+p[i]-1这段都是回文。由于前两段之和必为偶数,所以必须选取s[i]为'-1'的。
(2)扫一遍每个'-1',以其最长的回文开始穷举(仅需将p[i]--即可,然后找到右边对应的'-1',判断p[i]是不是大于所穷举的长度),直到3段都满足要求了,跳出此‘-1’,换下一个。
有什么问题都可以留下来,我们来讨论讨论增强理解。
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #include<math.h> #include<vector> #include<map> #include<set> #include<stdlib.h> #include<cmath> #include<string> #include<algorithm> #include<iostream> #define exp 1e-10 using namespace std; const int N = 100005; const int inf = 1000000000; int p[N*2],s[N*2],n; void Manacher() { int id = 0, maxlen = 0; for (int i = n;i >= 0;--i) { s[i + i + 2] = s[i]; s[i + i + 1] = -1; } s[0] = -2; for (int i = 2;i < 2 * n + 1;++i) { if (p[id] + id > i)p[i] = min(p[2 * id - i], p[id] + id - i); else p[i] = 1; while (s[i - p[i]] == s[i + p[i]])++p[i]; if (id + p[id] < i + p[i])id = i; if (maxlen < p[i])maxlen = p[i]; } //cout << maxlen - 1 << endl; } int main() { int t,i,j,x,Max,k=1,c; scanf("%d",&t); while(t--) { Max=0; memset(p,0,sizeof(p)); scanf("%d",&n); for(i=0;i<n;i++) scanf("%d",&s[i]); Manacher(); /*for(i=3;i<2 * n + 1;i+=2) printf(" %d",p[i]-1);*/ for(i=3;i<2 * n + 1;i+=2) if(p[i]-1>Max) { c=p[i]-1; while(c>Max&&p[i+c]<c) c--; Max=Max>c?Max:c; } printf("Case #%d: %d\n",k++,Max/2*3); } return 0; }菜鸟成长记