opencv-图像扫描,查表和处理时间选择(修改)

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <sstream>

using namespace std;
using namespace cv;

void help()
{
	cout
		<< "\n--------------------------------------------------------------------------" << endl
		<< "This program shows how to scan image objects in OpenCV (cv::Mat). As use case"
		<< " we take an input image and divide the native color palette (255) with the "  << endl
		<< "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl
		<< "Usage:"                                                                       << endl
		<< "./howToScanImages imageNameToUse divideWith [G]"                              << endl
		<< "if you add a G parameter the image is processed in gray scale"                << endl
		<< "--------------------------------------------------------------------------"   << endl
		<< endl;
}

Mat& ScanImageAndReduceC(Mat& I, const uchar* table);
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar * table);

int main( int argc, char* argv[])
{
	help();
	if (argc < 3)
	{
		cout << "Not enough parameters" << endl;
		return -1;
	}

	Mat I, J;
	if( argc == 4 && !strcmp(argv[3],"G") )
		I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
		
	else
		I = imread(argv[1], CV_LOAD_IMAGE_COLOR);
		

	if (!I.data)
	{
		cout << "The image" << argv[1] << " could not be loaded." << endl;
		return -1;
	}

	int divideWith; // convert our input string to number - C++ style
	stringstream s;
	s << argv[2];   //写入流执行数据结构变换
	s >> divideWith;
	if (!s)
	{
	    cout << "Invalid number entered for dividing. " << endl;
	    return -1;
	}

	uchar table[256];
	for (int i = 0; i < 256; ++i)
	  table[i] = divideWith* (i/divideWith);

	const int times = 100;//各个运算循环次数常量100

	//ScanImageAndReduceC运算时间---
	double t;
	t = (double)getTickCount();

	for (int i = 0; i < times; ++i)
	{
		cv::Mat clone_i = I.clone();
		J = ScanImageAndReduceC(clone_i, table);
	}
	t = 1000*((double)getTickCount() - t)/getTickFrequency();
	t /= times;
	cout << "Time of reducing with the C operator [] (averaged for "
		<< times << " runs): " << t << " milliseconds."<< endl;


	//ScanImageAndReduceIterator运算时间---
	t = (double)getTickCount();
	for (int i = 0; i < times; ++i)
	{
		cv::Mat clone_i = I.clone();
		J = ScanImageAndReduceIterator(clone_i, table);
	}
	t = 1000*((double)getTickCount() - t)/getTickFrequency();
	t /= times;
	cout << "Time of reducing with the iterator (averaged for "
		<< times << " runs): " << t << " milliseconds."<< endl;


	//ScanImageAndReduceRandomAccess运算时间---
	t = (double)getTickCount();
	for (int i = 0; i < times; ++i)
	{
		cv::Mat clone_i = I.clone();
		ScanImageAndReduceRandomAccess(clone_i, table);
	}
	t = 1000*((double)getTickCount() - t)/getTickFrequency();
	t /= times;
	cout << "Time of reducing with the on-the-fly address generation - at function (averaged for "
		<< times << " runs): " << t << " milliseconds."<< endl;


	//The Core FunctionLTU
	Mat lookUpTable(1, 256, CV_8U);
	uchar* p = lookUpTable.data;
	for( int i = 0; i < 256; ++i)
		p[i] = table[i];
	//LUT运算时间
	t = (double)getTickCount();
	for (int i = 0; i < times; ++i)
		LUT(I, lookUpTable, J);

	t = 1000*((double)getTickCount() - t)/getTickFrequency();
	t /= times;
	cout << "Time of reducing with the LUT function (averaged for "
		<< times << " runs): " << t << " milliseconds."<< endl;


	return 0;
}

Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));

	int channels = I.channels();

	int nRows = I.rows;
	int nCols = I.cols * channels;

	if (I.isContinuous())
	{
		nCols *= nRows;
		nRows = 1;
	}

	int i,j;
	uchar* p;
	for( i = 0; i < nRows; ++i)
	{
		p = I.ptr<uchar>(i);
		for ( j = 0; j < nCols; ++j)
		{
			p[j] = table[p[j]];
		}
	}
	return I;
}

Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));

	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			MatIterator_<uchar> it, end;
			for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
				*it = table[*it];
			break;
		}
	case 3:
		{
			MatIterator_<Vec3b> it, end;
			for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
			{
				(*it)[0] = table[(*it)[0]];
				(*it)[1] = table[(*it)[1]];
				(*it)[2] = table[(*it)[2]];
			}
		}
	}

	return I;
}

Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));

	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			for( int i = 0; i < I.rows; ++i)
				for( int j = 0; j < I.cols; ++j )
					I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
			break;
		}
	case 3:
		{
			Mat_<Vec3b> _I = I;

			for( int i = 0; i < I.rows; ++i)
				for( int j = 0; j < I.cols; ++j )
				{
					_I(i,j)[0] = table[_I(i,j)[0]];
					_I(i,j)[1] = table[_I(i,j)[1]];
					_I(i,j)[2] = table[_I(i,j)[2]];
				}
				I = _I;
				break;
		}
	}

	return I;
}


opencv-图像扫描,查表和处理时间选择(修改)_第1张图片


opencv-图像扫描,查表和处理时间选择(修改)_第2张图片


你可能感兴趣的:(opencv)