#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> #include <sstream> using namespace std; using namespace cv; void help() { cout << "\n--------------------------------------------------------------------------" << endl << "This program shows how to scan image objects in OpenCV (cv::Mat). As use case" << " we take an input image and divide the native color palette (255) with the " << endl << "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl << "Usage:" << endl << "./howToScanImages imageNameToUse divideWith [G]" << endl << "if you add a G parameter the image is processed in gray scale" << endl << "--------------------------------------------------------------------------" << endl << endl; } Mat& ScanImageAndReduceC(Mat& I, const uchar* table); Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table); Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar * table); int main( int argc, char* argv[]) { help(); if (argc < 3) { cout << "Not enough parameters" << endl; return -1; } Mat I, J; if( argc == 4 && !strcmp(argv[3],"G") ) I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE); else I = imread(argv[1], CV_LOAD_IMAGE_COLOR); if (!I.data) { cout << "The image" << argv[1] << " could not be loaded." << endl; return -1; } int divideWith; // convert our input string to number - C++ style stringstream s; s << argv[2]; //写入流执行数据结构变换 s >> divideWith; if (!s) { cout << "Invalid number entered for dividing. " << endl; return -1; } uchar table[256]; for (int i = 0; i < 256; ++i) table[i] = divideWith* (i/divideWith); const int times = 100;//各个运算循环次数常量100 //ScanImageAndReduceC运算时间--- double t; t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); J = ScanImageAndReduceC(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the C operator [] (averaged for " << times << " runs): " << t << " milliseconds."<< endl; //ScanImageAndReduceIterator运算时间--- t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); J = ScanImageAndReduceIterator(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the iterator (averaged for " << times << " runs): " << t << " milliseconds."<< endl; //ScanImageAndReduceRandomAccess运算时间--- t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); ScanImageAndReduceRandomAccess(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the on-the-fly address generation - at function (averaged for " << times << " runs): " << t << " milliseconds."<< endl; //The Core FunctionLTU Mat lookUpTable(1, 256, CV_8U); uchar* p = lookUpTable.data; for( int i = 0; i < 256; ++i) p[i] = table[i]; //LUT运算时间 t = (double)getTickCount(); for (int i = 0; i < times; ++i) LUT(I, lookUpTable, J); t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the LUT function (averaged for " << times << " runs): " << t << " milliseconds."<< endl; return 0; } Mat& ScanImageAndReduceC(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); int channels = I.channels(); int nRows = I.rows; int nCols = I.cols * channels; if (I.isContinuous()) { nCols *= nRows; nRows = 1; } int i,j; uchar* p; for( i = 0; i < nRows; ++i) { p = I.ptr<uchar>(i); for ( j = 0; j < nCols; ++j) { p[j] = table[p[j]]; } } return I; } Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); const int channels = I.channels(); switch(channels) { case 1: { MatIterator_<uchar> it, end; for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it) *it = table[*it]; break; } case 3: { MatIterator_<Vec3b> it, end; for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it) { (*it)[0] = table[(*it)[0]]; (*it)[1] = table[(*it)[1]]; (*it)[2] = table[(*it)[2]]; } } } return I; } Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); const int channels = I.channels(); switch(channels) { case 1: { for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) I.at<uchar>(i,j) = table[I.at<uchar>(i,j)]; break; } case 3: { Mat_<Vec3b> _I = I; for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) { _I(i,j)[0] = table[_I(i,j)[0]]; _I(i,j)[1] = table[_I(i,j)[1]]; _I(i,j)[2] = table[_I(i,j)[2]]; } I = _I; break; } } return I; }