标准的凸包题目,题目不难理解,就是求走一周的路程。
结果等于,凸包周长+一个完整的圆周长。
因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆。
坑得的精度,四舍五入!=(int)类型强制转换。。。
#include <iostream> #include <math.h> #include <algorithm> #include <stdlib.h> using namespace std; #define pi acos(-1.0) #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) struct point{ double x, y; }p[1005], convex[1005]; double dis(point a, point b) { return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } //计算cross product (P1-P0)x(P2-P0) double xmult(point p1, point p2, point p0){ return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y); } //graham算法顺时针构造包含所有共线点的凸包,O(nlogn) point p1, p2; int graham_cp(const void* a, const void* b){ double ret = xmult(*((point*) a), *((point*) b), p1); return zero(ret) ? (xmult(*((point*) a), *((point*) b), p2) > 0 ? 1 : -1) : (ret > 0 ? 1 : -1); } void _graham(int n, point* p, int& s, point* ch){ int i, k = 0; for (p1 = p2 = p[0], i = 1; i<n; p2.x += p[i].x, p2.y += p[i].y, i++) if (p1.y - p[i].y>eps || (zero(p1.y - p[i].y) && p1.x > p[i].x)) p1 = p[k = i]; p2.x /= n, p2.y /= n; p[k] = p[0], p[0] = p1; qsort(p + 1, n - 1, sizeof(point), graham_cp); for (ch[0] = p[0], ch[1] = p[1], ch[2] = p[2], s = i = 3; i < n; ch[s++] = p[i++]) for (; s>2 && xmult(ch[s - 2], p[i], ch[s - 1]) < -eps; s--); } int wipesame_cp(const void *a, const void *b) { if ((*(point *) a).y < (*(point *) b).y - eps) return -1; else if ((*(point *) a).y > (*(point *) b).y + eps) return 1; else if ((*(point *) a).x < (*(point *) b).x - eps) return -1; else if ((*(point *) a).x > (*(point *) b).x + eps) return 1; else return 0; } int _wipesame(point * p, int n) { int i, k; qsort(p, n, sizeof(point), wipesame_cp); for (k = i = 1; i < n; i++) if (wipesame_cp(p + i, p + i - 1) != 0) p[k++] = p[i]; return k; } //构造凸包接口函数,传入原始点集大小n,点集p(p原有顺序被打乱!) //返回凸包大小,凸包的点在convex中 //参数maxsize为1包含共线点,为0不包含共线点,缺省为1 //参数dir为1顺时针构造,为0逆时针构造,缺省为1 //在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理! int graham(int n, point* p, point* convex, int maxsize = 1, int dir = 1){ point* temp = new point[n]; int s, i; n = _wipesame(p, n); _graham(n, p, s, temp); for (convex[0] = temp[0], n = 1, i = (dir ? 1 : (s - 1)); dir ? (i < s) : i; i += (dir ? 1 : -1)) if (maxsize || !zero(xmult(temp[i - 1], temp[i], temp[(i + 1)%s]))) convex[n++] = temp[i]; delete []temp; return n; } int main() { int n; double d; while (cin >> n >> d) { memset(p, 0, sizeof(p)); memset(convex, 0, sizeof(convex)); double dist = 0.0; for (int i = 0; i < n; i++) { cin >> p[i].x >> p[i].y; } //cout << n << endl; int size = graham(n, p, convex,0); //cout << size << endl; for (int i = 0; i < size - 1; i++) { dist += dis(convex[i], convex[i + 1]); } dist += dis(convex[size - 1], convex[0]);//别忘了起始到结束的长度 cout << (int) (dist + 2 * pi * d + 0.5) << endl; } }