题目描述:(minimum swaps)
Given a sequence, we have to find the minimum no of swaps required to sort the sequence.
分析:
formula: no. of elements out of place - "cycles" in the sequence
A cycle is a set of elements, each of which is in the place of another. So in example sequences { 2, 1, 4, 3}, there are two cycles: {1, 2} and {3, 4}. 1 is in the place where 2 needs to go, and 2 is in the place where 1 needs to go 1, so they are a cycle; likewise with 3 and 4.
The sequences {3, 2, 1, 5, 6, 8, 4, 7 }also has two cycles: 3 is in the place of 1 which is in the place of 3, so {1, 3} is a cycle; 2 is in its proper place; and 4 is in the place of 7 which is in the place of 8 in place of 6 in place of 5 in place of 4, so {4, 7, 8, 6, 5} is a cycle. There are seven elements out of place in two cycles, so five swaps are needed.
实现:
e.g. { 2, 3, 1, 5, 6, 4}
231564 -> 6 mismatch
two cycles -> 123 and 456
swap 1,2 then 2,3, then 4,5 then 5,6 -> 4 swaps to sort
Probably the easiest algorithm would be to use a bitarray. Initialize it to 0, then start at the first 0. Swap the number there to the right place and put a 1 there. Continue until the current place holds the right number. Then move on to the next 0
Example:
231564
000000
-> swap 2,3
321564
010000
-> swap 3,1
123564
111000
-> continue at next 0; swap 5,6
123654
111010
-> swap 6,4
123456
111111
-> bitarray is all 1's, so we're done.
代码:
#include <iostream>
#include <algorithm>
using namespace std;
template <typename T>
int GetMinimumSwapsForSorted(T seq[], int n)
{
bool* right_place_flag = new bool[n];
T* sorted_seq = new T[n];
int p ,q;
////
copy(seq, seq + n, sorted_seq);
sort(sorted_seq, sorted_seq + n); ////可采用效率更高的排序算法
////
for(int i = 0; i < n; i++)
{
if(seq[i] != sorted_seq[i])
right_place_flag[i] = false;
else
right_place_flag[i] = true;
}
////
p = 0;
int minimumswap = 0;
while(1)
{
while(right_place_flag[p])
p++;
q = p + 1;
////此种找法只对无重复序列能得出minimum swaps
while(q < n)
{
if(!right_place_flag[q] && sorted_seq[q] == seq[p])
break;
q++;
}
if(q >= n || p >= n)
break;
right_place_flag[q] = true;
if(seq[q] == sorted_seq[p])
right_place_flag[p] = true;
swap(seq[p], seq[q]);
minimumswap++;
}
delete[] sorted_seq;
delete[] right_place_flag;
return minimumswap;
}
int _tmain(int argc, _TCHAR* argv[])
{
int seq[] = {3, 2, 1, 5, 6, 8, 4, 7 };//{2,3,1,5,6,4};//{2,3,2,4,7,6,3,5};
int n = sizeof(seq) / sizeof(int);
cout<<"minimum swaps : "<<GetMinimumSwapsForSorted(seq, n)<<endl;
system("pause");
return 0;
}
题目描述:(删除序列中所有重复的元素)
Given an unsorted n element array[0....n-1] not containing any numbers outside the range 1 to n. We need to remove all duplicates from this array in constant space and O(n) time.
分析:
array[0...n-1]取值[1,n],可以转换思路对序列中存在的元素作标记,然后输出这些元素便去掉了序列中所有的重复元素,时间复杂度为O(n)
代码:
#include <iostream>
#include <math.h>
using namespace std;
void RemoveAllDuplicates(int seq[], int n)
{
// if element e exists in the array, make index (e-1) negative
for(int i = 0; i < n; i++)
seq[abs(seq[i]) - 1] = -abs(seq[abs(seq[i]) - 1]);
// if index (e-1) is negative, print element e
cout<<endl;
for(int i = 0; i < n; i++)
if(seq[i] < 0)
cout<<i + 1<<"/t";
cout<<endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
int seq[] = { 5,3,4,2,3,2,2,5};
RemoveAllDuplicates(seq, 8);
system("pause");
return 0;
}