相关问题1:八皇后问题,解决思路和代码
相关问题2:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle. Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively. For example, there exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]本题的思路和八皇后问题的思路完全一样。
代码如下:
class Solution { public: vector<vector<string> > solveNQueens(int n) { vector<string> sol; vector<vector<string>> sols; solveNQueensUtil(n, 0, sol, sols); return sols; } // 逐行求解N-Queen问题 // 在每一行上,尝试每一个可能的列的位置 void solveNQueensUtil(int n, int row, vector<string> sol, vector<vector<string>>& sols) { if(row==n) { sols.push_back(sol); return; } for(int i=0;i<n;i++) { string str(n, '.'); str[i]='Q'; sol.push_back(str); if(isValid(sol, row, i)) solveNQueensUtil(n, row+1, sol, sols); sol.pop_back(); } } bool isValid(vector<string> &cur, int row, int col) { int count = 0; // 列 for(int i = 0; i <= row; i++) { if(cur[i][col] == 'Q') count++; if(count>1) return false; } count = 0; //右对角线 for(int i = row, j=col; i >= 0 && j >= 0; i--,j--) { if(cur[i][j] == 'Q') count++; if(count>1) return false; } count=0; //左对角线 for(int i = row, j=col; i >= 0 && j < cur[0].size(); i--,j++) { if(cur[i][j] == 'Q') count++; if(count>1) return false; } return true; } };