集体智慧编程书中的一些关键概念

1 Scaling and superfluous variables

对某些变量值放大,而对另一些值缩小,使整体数据间具有可比性


2 Multimentional Scaling

可视化数据间的关联关系


3 非负矩阵分解

Non-negative matrix factorization

用以帮助我们识别数据的特征

来源:集体智慧编程中文版


Appendix: 

A 非负矩阵分解补充(wiki)

Non-negative matrix factorization

From Wikipedia, the free encyclopedia
NMF redirects here. For the bridge convention, see new minor forcing.

Non-negative matrix factorization (NMF) is a group of algorithms in multivariate analysis and linear algebra where a matrix, , is factorized into (usually) two matrices,  and  : 

Factorization of matrices is generally non-unique, and a number of different methods of doing so have been developed (e.g. principal component analysis and singular value decomposition) by incorporating different constraints; non-negative matrix factorization differs from these methods in that it enforces the constraint that the factors W and H must be non-negative, i.e., all elements must be equal to or greater than zero.

来源2: http://en.wikipedia.org/wiki/Non-negative_matrix_factorization


B 非负张量分解

http://www.cc.gatech.edu/~hpark/nmfsoftware.php

你可能感兴趣的:(集体智慧编程书中的一些关键概念)