【声明】
(1) 本文源码
在一位未署名网友源码基础上,利用Qt编程,实现了AES加解密算法,并添加了文件加解密功能。在此表示感谢!该源码仅供学习交流,请勿用于商业目的。
(2) 图片及描述
除图1外,图片及部分解析来自http://zh.wikipedia.org/wiki/%E9%AB%98%E7%BA%A7%E5%8A%A0%E5%AF%86%E6%A0%87%E5%87%86。图1为个人劳动成果,请勿盗用此图。
【简介】
AES(Advanced Encryption Standard,高级加密标准),于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。
【算法描述】
AES的区块长度固定为128 比特,密钥长度则可以是128,192或256比特。AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。加密时,各轮AES加密循环(除最后一轮外)均包含4个步骤:
1.AddRoundKey — 矩阵中的每一个字节都与该次轮密钥(round key)做XOR运算;每个子密钥由密钥生成方案产生。
2.SubBytes — 通过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。
3.ShiftRows — 将矩阵中的每个横列进行循环式移位。
4.MixColumns — 为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每内联的四个字节。
最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。
AES算法加解密流程如图1所示:
图1 AES加密算法流程图
【算法解析】
1 常量定义
S-Box
const unsigned char AES::Sbox[16*16]= {// populate the Sbox matrix /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /*0*/ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, /*1*/ 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, /*2*/ 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, /*3*/ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, /*4*/ 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, /*5*/ 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, /*6*/ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, /*7*/ 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, /*8*/ 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, /*9*/ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, /*a*/ 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, /*b*/ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, /*c*/ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, /*d*/ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, /*e*/ 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, /*f*/ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
const unsigned char AES::iSbox[16*16]= { // populate the iSbox matrix /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /*0*/ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, /*1*/ 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, /*2*/ 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, /*3*/ 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, /*4*/ 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, /*5*/ 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, /*6*/ 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, /*7*/ 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, /*8*/ 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, /*9*/ 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, /*a*/ 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, /*b*/ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, /*c*/ 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, /*d*/ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, /*e*/ 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, /*f*/ 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
Rcon
const unsigned char AES::Rcon[11*4]= { 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x1b, 0x00, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00 };
2 密钥扩展(Expand Key)
AES算法利用外部输入密钥Key(又称为基密钥,密钥串的字数为Nk),通过密钥扩展可得到共4(Nk+1)字的扩展密钥w[4× (Nr+1)],其中Nr为数据分组密钥的轮数。密钥扩展主要包括3个步骤:
(1) 位置变换RotWord()
把一个4字节的基密钥序列[a0,a1,a2,a3],左移一个字节变为[a1,a2,a3,a0]。
void AES::RotWord(unsigned char * word,unsigned char *result) { result[0] = word[1]; result[1] = word[2]; result[2] = word[3]; result[3] = word[0]; }
(2) SubWord()
对一个4字节的输入字[a0,a1,a2,a3],每一个字节进行S盒变换。
void AES::SubWord(unsigned char * word,unsigned char* result) { result[0] = Sbox[ 16*(word[0] >> 4)+ (word[0] & 0x0f) ]; result[1] = Sbox[ 16*(word[1] >> 4)+ (word[1] & 0x0f) ]; result[2] = Sbox[ 16*(word[2] >> 4)+ (word[2] & 0x0f) ]; result[3] = Sbox[ 16*(word[3] >> 4)+ (word[3] & 0x0f) ]; }
(3) 变换Rcon[]
Rcon[i]表示32比特字符串[xi-1,00,00,00]。
temp[0] = (byte)( (int)temp[0] ^ (int) Rcon[4*(row/Nk)+0] ); temp[1] = (byte)( (int)temp[1] ^ (int) Rcon[4*(row/Nk)+1] ); temp[2] = (byte)( (int)temp[2] ^ (int) Rcon[4*(row/Nk)+2] ); temp[3] = (byte)( (int)temp[3] ^ (int) Rcon[4*(row/Nk)+3] );
扩展密钥的前Nk个字就是基密钥Key;以后的字w[i]等于它前一个字w[i-1]与前第Nk个字w[i-Nk]的异或,即w[i]=w[i-1] XOR w[i-Nk]。但如果i是Nk的倍数,则w[i]=w[i-Nk] XOR SubWord(RotWord(w[i-1])) XOR Rcon[i/Nk]。
void AES::KeyExpansion() { unsigned char result[4],result2[4]; memset(w,0,16*15);//没有根据key的位数进行开辟空间,直接开辟了最大空间 int row; for (row = 0; row < Nk; row++)//Nk=4,6,8得到初始密码 { w[4*row+0] = key[4*row]; w[4*row+1] = key[4*row+1]; w[4*row+2] = key[4*row+2]; w[4*row+3] = key[4*row+3]; } unsigned char temp[4]; for (row = Nk; row < Nb * (Nr+1); row++)//产生密匙顺序表 { temp[0] = w[4*(row-1)+0]; temp[1] = w[4*(row-1)+1]; temp[2] = w[4*(row-1)+2]; temp[3] = w[4*(row-1)+3]; if (row % Nk == 0) { RotWord(temp,result); SubWord(result,result2); memcpy(temp,result2,4);// //RotWord 例程非常简单,它接受 4 字节的数组并将它们向左旋转位移 1 位。 //因为轮回次序表 w[] 有四列,所以 RotWord 会将一行 w[] 向左旋转位移. //SubWord 例程使用置换表 Sbox,针对密钥次序表 w[] 的给定行执行逐字节置换。 temp[0] = (byte)( (int)temp[0] ^ (int) Rcon[4*(row/Nk)+0] ); temp[1] = (byte)( (int)temp[1] ^ (int) Rcon[4*(row/Nk)+1] ); temp[2] = (byte)( (int)temp[2] ^ (int) Rcon[4*(row/Nk)+2] ); temp[3] = (byte)( (int)temp[3] ^ (int) Rcon[4*(row/Nk)+3] ); } else if ( Nk > 6 && (row % Nk == 4) ) { SubWord(temp,result); memcpy(temp,result,4); } // w[row] = w[row-Nk] xor temp w[4*row+0] = (byte) ( (int) w[4*(row-Nk)+0] ^ (int)temp[0] ); w[4*row+1] = (byte) ( (int) w[4*(row-Nk)+1] ^ (int)temp[1] ); w[4*row+2] = (byte) ( (int) w[4*(row-Nk)+2] ^ (int)temp[2] ); w[4*row+3] = (byte) ( (int) w[4*(row-Nk)+3] ^ (int)temp[3] ); } // for loop } // KeyExpansion()
3 轮密钥加(Add Round Key)
如图2所示,经过扩展的密钥,根据加密的轮数用相应的扩展密钥的4个数据项和中间状态矩阵上的列进行按位异或:
[s(0,c)’, s(1,c)’, s(2,c)’, s(3,c)’]= [s(0,c), s(1,c), s(2,c), s(3,c)] XOR [W(round×Nb+c)]。
图2 Add Round Key
void AES::AddRoundKey(int round) { int r,c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) {//w: 4*x+y State[r][c]=(unsigned char)((int)State[r][c]^(int)w[4*((round*4)+c)+r]); } } } // AddRoundKey()
4 字节替代(Substitute Bytes)
如图3所示,从S-Box中找出S[A]=S[x,y]的值,其中A为输入矩阵任一元素。将
转换为
图3 Substitute Bytes
void AES::SubBytes() { int r,c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { State[r][c] = Sbox[ 16*(State[r][c] >> 4)+ ( State[r][c] & 0x0f) ]; } } } // SubBytes void AES::InvSubBytes() { int r,c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { State[r][c] = iSbox[ 16*( State[r][c] >> 4)+( State[r][c] & 0x0f) ]; } } } // InvSubBytes
5 行移位(Shift Rows)
如图4所示,将矩阵中的每一个横列进行循环式移位。移位的规则是:第一行维持不变,第二、第三、第四行的每个字节向左循环移位的偏移量分别为1格,2格,3格。
图4 Shift Rows
void AES::ShiftRows() { unsigned char temp[4*4]; int r,c; for (r = 0; r < 4; r++) // copy State into temp[] { for (c = 0; c < 4; c++) { temp[4*r+c] = State[r][c]; } } for (r = 1; r < 4; r++) // shift temp into State { for (c = 0; c < 4; c++) { State[r][c] = temp[ 4*r+ (c + r) % Nb ]; } } } // ShiftRows() void AES::InvShiftRows() { unsigned char temp[4*4]; int r,c; for (r = 0; r < 4; r++) // copy State into temp[] { for (c = 0; c < 4; c++) { temp[4*r+c] = State[r][c]; } } for (r = 1; r < 4; r++) // shift temp into State { for (c = 0; c < 4; c++) { State[r][ (c + r) % Nb ] = temp[4*r+c]; } } } // InvShiftRows()
6 列混淆(Mix Columns)
如图5所示,列变换的中间状态矩阵State如下所示:
图5 Mix Column
void AES::MixColumns() { unsigned char temp[4*4]; int r,c; for (r = 0; r < 4; r++) // copy State into temp[] { for (c = 0; c < 4; c++) { temp[4*r+c] = State[r][c]; } } for (c = 0; c < 4; c++) { State[0][c] = (unsigned char) ( (int)gfmultby02(temp[0+c]) ^ (int)gfmultby03(temp[4*1+c]) ^ (int)gfmultby01(temp[4*2+c]) ^ (int)gfmultby01(temp[4*3+c]) ); State[1][c] = (unsigned char) ( (int)gfmultby01(temp[0+c]) ^ (int)gfmultby02(temp[4*1+c]) ^ (int)gfmultby03(temp[4*2+c]) ^ (int)gfmultby01(temp[4*3+c]) ); State[2][c] = (unsigned char) ( (int)gfmultby01(temp[0+c]) ^ (int)gfmultby01(temp[4*1+c]) ^ (int)gfmultby02(temp[4*2+c]) ^ (int)gfmultby03(temp[4*3+c]) ); State[3][c] = (unsigned char) ( (int)gfmultby03(temp[0+c]) ^ (int)gfmultby01(temp[4*1+c]) ^ (int)gfmultby01(temp[4*2+c]) ^ (int)gfmultby02(temp[4*3+c]) ); } } // MixColumns void AES::InvMixColumns() { unsigned char temp[4*4]; int r,c; for (r = 0; r < 4; r++) // copy State into temp[] { for (c = 0; c < 4; c++) { temp[4*r+c] = State[r][c]; } } for (c = 0; c < 4; c++) { State[0][c] = (unsigned char) ( (int)gfmultby0e(temp[c]) ^ (int)gfmultby0b(temp[4+c]) ^ (int)gfmultby0d(temp[4*2+c]) ^ (int)gfmultby09(temp[4*3+c]) ); State[1][c] = (unsigned char) ( (int)gfmultby09(temp[c]) ^ (int)gfmultby0e(temp[4+c]) ^ (int)gfmultby0b(temp[4*2+c]) ^ (int)gfmultby0d(temp[4*3+c]) ); State[2][c] = (unsigned char) ( (int)gfmultby0d(temp[c]) ^ (int)gfmultby09(temp[4+c]) ^ (int)gfmultby0e(temp[4*2+c]) ^ (int)gfmultby0b(temp[4*3+c]) ); State[3][c] = (unsigned char) ( (int)gfmultby0b(temp[c]) ^ (int)gfmultby0d(temp[4+c]) ^ (int)gfmultby09(temp[4*2+c]) ^ (int)gfmultby0e(temp[4*3+c]) ); } } // InvMixColumns unsigned char AES::gfmultby01(unsigned char b) { return b; } unsigned char AES::gfmultby02(unsigned char b) { if (b < 0x80) return (unsigned char)(int)(b <<1); else return (unsigned char)( (int)(b << 1) ^ (int)(0x1b) ); } unsigned char AES::gfmultby03(unsigned char b) { return (unsigned char) ( (int)gfmultby02(b) ^ (int)b ); } unsigned char AES::gfmultby09(unsigned char b) { return (unsigned char)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)b ); } unsigned char AES::gfmultby0b(unsigned char b) { return (unsigned char)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(b) ^ (int)b ); } unsigned char AES::gfmultby0d(unsigned char b) { return (unsigned char)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(gfmultby02(b)) ^ (int)(b) ); } unsigned char AES::gfmultby0e(unsigned char b) { return (unsigned char)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(gfmultby02(b)) ^ (int)gfmultby02(b) ); }
7 AES加密
加密时,首先进行密钥扩展。密钥扩展的结果是将初始密钥按照一定的移位和置换操作扩展为11组128位的密钥,存储在一个W[44][4]的数组里。将输入的明文,按列顺序组合成4×4的矩阵,直接与第0组密钥W[0,3](即基密钥Key)进行异或,作为轮加密的输入。然后,循环10次进行字节替代(Substitute Bytes)、行位移(Shift Rows)、列混淆(Mix Columns)、轮密钥加运算(Add Round Key)。最后一轮运算不进行列混淆变换。最后,输出128位的密文比特流。
void AES::Cipher(unsigned char* input, unsigned char* output) // encipher 16-bit input { // state = input memset(&State[0][0],0,16); int i; for (i = 0; i < (4 * Nb); i++)// { State[i % 4][ i / 4] = input[i]; } AddRoundKey(0); for (int round = 1; round <= (Nr - 1); round++) // main round loop { SubBytes(); ShiftRows(); MixColumns(); AddRoundKey(round); } // main round loop SubBytes(); ShiftRows(); AddRoundKey(Nr); // output = state for (i = 0; i < (4 * Nb); i++) { output[i] = State[i % 4][ i / 4]; } } // Cipher()
8 AES解密
解密时,进行加密过程逆运算,除轮密钥加和密钥扩展不变外,其余都需要进行相应的逆变换。当基密钥正确,并且采用正确的解密算法,点击解密,对文件进行正确解密。
void AES::InvCipher(unsigned char * input, unsigned char * output) // decipher 16-bit input { // state = input int i; memset(&State[0][0],0,16); for (i = 0; i < (4 * Nb); i++) { State[i % 4][ i / 4] = input[i]; } AddRoundKey(Nr); for (int round = Nr-1; round >= 1; round--) // main round loop { InvShiftRows(); InvSubBytes(); AddRoundKey(round); InvMixColumns(); } // end main round loop for InvCipher InvShiftRows(); InvSubBytes(); AddRoundKey(0); // output = state for (i = 0; i < (4 * Nb); i++) { output[i] = State[i % 4][ i / 4]; } } // InvCipher()
【算法举例】
void print(const char *key, unsigned char* value) { int i; printf("%s:\n", key); for(i=0; i<16; i++) { printf("%s%#x ", value[i]>15 ? "" : "0", value[i]); } printf("\n"); } unsigned char input[] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34 }; unsigned char output[16] = { 0 }; unsigned char key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }; AES aes(Bits128,key); //-1- print("Input", input); aes.Cipher(input,output); print("After Cipher", output); aes.InvCipher(output,input); print("After InvCipher", input);
【文件加密】
本文仅分析AES算法本身,不就AES文件加密进行分析。源码中的文件加密功能仅供测试用。实际使用时,文件加密可使用多线程,要考虑加锁、明文字节填充等问题。
【源码下载】
http://download.csdn.net/detail/tandesir/4613524
【参考文献】
1 http://zh.wikipedia.org/wiki/%E9%AB%98%E7%BA%A7%E5%8A%A0%E5%AF%86%E6%A0%87%E5%87%86
2 何明星,林昊.AES算法原理及应用[J]计算机应用研究,19(12),2002:61-63.
转载请标明出处,仅供学习交流,勿用于商业目的
Copyright @ http://blog.csdn.net/tandesir