下面我给出支持单个Socket及支持多个Socket的Console程序代码。先来看看支持单个Socket的程序,考虑到代码简洁性,只给一个框架,同时不进行出错处理。
int main()
{
WSAOVERLAPPED Overlapped;
// 启动Winsock及建立监听套接字
listen(hListenSocket, 5);
hClientSocket = accept(hListenSocket, NULL, NULL);
ZeroMemory(&Overlapped, sizeof(WSAOVERLAPPED));
nResult = WSARecv(...); // 发出请求
for (; ;)
{
bResult = WSAGetOverlappedResult(...);
// 函数返回后进行相应的处理
nResult = WSARecv(...); // 发出另外一个请求
}
}
上面的程序只是想说明一下过程,程序没有实现什么功能。这样做的目的是节约字数,用来说明我下面支持多个Socket的Console应用。请继续看。
先看一个自定义的结构体,单句柄数据结构,通过该结构,主线程与某个特定的子线程中的套接字相互联系。
typedef struct _PER_HANDLE_DATA
{
SOCKET hSocket; // 主键:通信套接字
char szClientIP[16];// 自定义字段:客户端地址
int nOperateType; // 自定义字段:操作类型
}PER_HANDLE_DATA, FAR* LPPER_HANDLE_DATA;
在上面的结构中还可以加入自己需要的字段。在我下面的例子程序中,szClientIP是用来保存连接上来的客户端的IP的,这样在主线程将这个结构体传给子线程后,在子线程中根据客户端IP就知道目前处理的是哪个客户端了。下面是程序的大部分,同样除去一些简单的出错输出。
#define LISTEN_PORT 5000
#define DATA_BUFSIZE 8192
#define POST_RECV 0X01
#define POST_SEND 0X02
int main( )
{
LPPER_HANDLE_DATA lpPerHandleData;
SOCKET hListenSocket;
SOCKET hClientSocket;
SOCKADDR_IN ClientAddr;
int nAddrLen;
HANDLE hThread;
// Start WinSock and create a listen socket.
listen(hListenSocket, 5);
for (; ;)
{
nAddrLen = sizeof(SOCKADDR);
hClientSocket = accept(hListenSocket, (LPSOCKADDR)&ClientAddr, &nAddrLen);
lpPerHandleData = (LPPER_HANDLE_DATA)malloc(sizeof(PER_HANDLE_DATA));
lpPerHandleData->hSocket = hClientSocket;
// 注意这里将连接的客户端的IP地址,保存到了lpPerHandleData字段中了
strcpy(lpPerHandleData->szClientIP, inet_ntoa(ClientAddr.sin_addr));
// 为本次客户请求产生子线程
hThread = CreateThread(
NULL,
0,
OverlappedThread,
lpPerHandleData, // 将lpPerHandleData传给子线程
0,
NULL
);
CloseHandle(hThread);
}
return 0;
}
DWORD WINAPI OverlappedThread(LPVOID lpParam)
{
LPPER_HANDLE_DATA lpPerHandleData = (LPPER_HANDLE_DATA)lpParam;
WSAOVERLAPPED Overlapped;
WSABUF wsaBuf;
char Buffer[DATA_BUFSIZE];
BOOL bResult;
int nResult;
ZeroMemory(&Overlapped, sizeof(WSAOVERLAPPED));
wsaBuf.buf = Buffer;
wsaBuf.len = sizeof(Buffer);
lpPerHandleData->nOperateType = POST_RECV; // 记录本次操作是Recv(..)
dwFlags = 0;
nResult = WSARecv(
lpPerHandleData->hSocket, // Receive socket
&wsaBuf, // 指向WSABUF结构的指针
1, // WSABUF数组的个数
&dwNumOfBytesRecved, // 存放当WSARecv完成后所接收到的字节数
&dwFlags, // A pointer to flags
&Overlapped, // A pointer to a WSAOVERLAPPED structure
NULL // A pointer to the completion routine,this is NULL
);
if ( nResult == SOCKET_ERROR && GetLastError() != WSA_IO_PENDING)
{
printf("WSARecv(..) failed.\n");
free(lpPerHandleData);
return 1;
}
while (TRUE)
{
bResult = WSAGetOverlappedResult(
lpPerHandleData->hSocket,
&Overlapped,
&dwBytesTransferred, // 当一个同步I/O完成后,接收到的字节数
TRUE, // 等待I/O操作的完成
&dwFlags
);
if (bResult == FALSE && WSAGetLastError() != WSA_IO_INCOMPLETE)
{
printf("WSAGetOverlappdResult(..) failed.\n");
free(lpPerHandleData);
return 1; // 错误退出
}
if (dwBytesTransferred == 0)
{
printf("客户端已退出,将断开与之的连接!\n");
closesocket(lpPerHandleData->hSocket);
free(lpPerHandleData);
break;
}
// 在这里将接收到的数据进行处理
printf("Received from IP: %s.\ndata: %s\n", lpPerHandleData->szClientIP, wsaBuf.buf);
// 发送另外一个请求操作
ZeroMemory(&Overlapped, sizeof(WSAOVERLAPPED));
lpPerHandleData->nOperateType = POST_RECV;
dwFlags = 0;
nResult = WSARecv(...);
if (...){}
}
return 0;
}
程序结构比较清晰,lpPerHandleData是主线程与子线程联系的纽带,子线程是通过这个结构获得所处理客户端的情况的。在不同的应用中可以将这个结构定义成不同的形式,以符合所实现应用的需要。注意结构体的nOperateType在GetOverlappedResult返回时用到,可以根据这个字段确定我们下一步的操作。请朋友们多提意见了。