poj 1470(LCA RE)

Closest Common Ancestors
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 11754   Accepted: 3875

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form: 

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ... 

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 
poj 1470(LCA RE)_第1张图片

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
      (2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

Southeastern Europe 2000
LCA的第一题就RE,数组扩大之后又MLE ,跪求大牛指点啊!!

RE代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define N 50010
int n,m,q,e,eq;
int num[N];
int first[N],next[N],v[N],w[N];
int first_q[N],next_q[N],u_q[N],v_q[N],lca[N];
int d[N],p[N];
int flag[N];
bool ok[N];
void init()
{
    e=eq=0;
    memset(first,-1,sizeof(first));
    memset(first_q,-1,sizeof(first_q));
    memset(lca,0,sizeof(lca));
    memset(p,-1,sizeof(p));
    memset(ok,0,sizeof(ok));
}
void add(int a,int b)
{
    v[e]=b;
    next[e]=first[a];
    first[a]=e++;
}
void add_q(int a,int b)
{
    u_q[eq]=a;
    v_q[eq]=b;
    next_q[eq]=first_q[a];
    first_q[a]=eq++;
}

void make_set(int i)
{
    p[i]=i;
}
int find_set(int i)
{
    if(i^p[i])  p[i]=find_set(p[i]);
    return p[i];
}
void union_set(int i,int j)
{
    i=find_set(i),j=find_set(j);
    p[j]=i;
}
void dfs(int a)
{
    int i,b;
    make_set(a);
    for(i=first[a];i!=-1;i=next[i])
    {
        b=v[i];
        if(p[b]==-1)
        {
            dfs(b);
            p[b]=a;
        }
    }
    for(i=first_q[a];i!=-1;i=next_q[i])
    if(!ok[i])
    {
        b=v_q[i];
        if(p[b]!=-1)lca[i]=find_set(b),ok[i]=true;
    }
}
inline bool get(int &a)
{
    char c;
    while(((c=getchar())<'0'||c>'9')&&c!=EOF);
    if(c==EOF)return 0;
    for(a=0;c>='0'&&c<='9';c=getchar())a=a*10+c-'0';
    return 1;
}

int main()
{
    int a,b,c,m,i;
    char s1,s2,s3;
    while(get(n))
    {
        init();
        memset(flag,-1,sizeof(flag));
        memset(num,0,sizeof(num));
        for(i=0;i<n;i++)
        {
            get(a);get(m);
            while(m--)
            {
            get(b);
            add(a,b);
            flag[b]++;
            }
        }
        get(q);
        while(q--)
        {
            get(a);get(b);
            add_q(a,b);
            add_q(b,a);
        }
        for(i=1;i<=n;i++)
        if(flag[i]==-1)
        {
            dfs(i);
        }
        for(int i=0;i<eq;i+=2)
        {
            a=u_q[i];
            b=v_q[i];
            c=lca[i];
            if(!c)  c=lca[i+1];
            num[c]++;
        }
        for(i=1;i<=n;i++)
        if(num[i])printf("%d:%d\n",i,num[i]/2);
    }
    return 0;
}



你可能感兴趣的:(c,tree,input,each,output,pair)