- 解密大模型全栈开发:从搭建环境到实战案例,一站式攻略
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能大模型全栈开发
目录大模型基础概念什么是大模型?大模型的发展历程大模型的类型大模型全栈开发环境搭建硬件需求软件环境配置云服务选择大模型应用开发流程模型选择策略提示工程(PromptEngineering)模型微调(Fine-tuning)参数高效微调(PEFT)大模型应用架构设计基本应用架构RAG(检索增强生成)系统Agent系统设计大模型应用部署与优化模型部署选项模型优化技术性能监控与调优大模型应用实战案例智能
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 不懂的还在争论AI,懂行的已用Python+DeepSeek变现!逆袭机会就在AI应用层
渡难繁辰
python开发人工智能拥抱AI人工智能pythonai
最近总有种错觉:AI时代轰轰烈烈,普通人却只能当看客?大模型训练动辄千万美金,算法高深莫测,似乎离我们太远。别急,AI真正的革命性力量,正从神秘实验室涌向普通人的键盘——它的名字叫“AI应用层”。而拿到这张船票的钥匙,就是你早该学起来的:Python。当质疑者还在争论“AI能否取代人类”,行动派已用DeepSeek+LangChain开发智能应用月入五位数!巨头烧钱搭台,我们轻量唱戏!科技大佬砸重
- 【向上教育】国企面试手册(OCR).pdf
㏕追忆似水年华あ
人工智能大数据算法旅游c语言
国企各省面试的形式主要是结构化面试,也有少部分单位采用无领导小组讨论的面试形式。全面了解面试形式是考生须知的重要信息之一。一、结构化面试结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据科学制定的评价指标,运用特定的问题、评价方法和评价标准,严格遵循特定程序,通过测评人员与被测试者进行语言交流,对被测试者进行评价的标准化过程。(一)结构化面试之三大规范1.考题规范化(1)测评要素一
- Word 中批量转换 LaTeX 公式为标准数学格式的终极方法(附宏设置教程)
小灰兔的小白兔
wordc#开发语言
在学术写作中,我们常常需要将LaTeX格式的公式插入到Word文档中。但如果你有一大段公式使用$...$或LaTeX命令,手动转换无疑非常耗时。本文将介绍一种“一键转换所有LaTeX公式为Word数学公式”的方法,只需设置一次宏,后续即可像“格式刷”一样使用!原理简介MicrosoftWord实际上内置了对LaTeX的识别能力,但需要配合“公式编辑框”使用。借助宏(Macro)功能,我们可以批量触
- 多云环境密钥硬核防护:KDPS如何实现千万级密钥生命周期管理?
安 当 加 密
安全
当GitHub2023年报告显示63%的数据泄露源自测试环境时,某证券公司因测试机密钥硬编码导致量化模型被盗的教训,揭示了多云时代的安全真相:分散的密钥管理=为黑客铺就黄金路。上海安当KDPS关键数据保护系统,以国密认证的KSP密钥中台+HSM硬件加密机为核心,构建千万级密钥的“中央管控引擎”。本文从三大维度拆解其硬核能力:一、密钥管理“铁三角”:集中化、自动化、合规化能力维度传统方案痛点KDPS
- 提示工程入门指南:如何有效地与大语言模型交互
止观止
大语言模型语言模型人工智能
本文深入拆解提示工程的核心概念、最佳实践和实用技巧。作为AI领域的热点技术,提示工程(PromptEngineering)能显著提升大语言模型(LargeLanguageModel,LLM)如DeepSeek的响应质量。文档结构概览引言:为什么需要提示工程?提示的定义与结构:上下文、指令、约束的完整解析提示工程原则:6项核心技巧有效vs无效提示对比:案例驱动的实操分析用户提示与系统提示:行为控制的
- python开发框架django/flask/fastapi对比
研创通之逍遥峰
Pythonpythondjangoflask
Python三大Web开发框架对比:DjangovsFlaskvsFastAPIPython生态系统中有三个主流的Web开发框架:Django、Flask和FastAPI。它们在设计哲学、功能特性和适用场景上各有不同。1.框架概览对比特性DjangoFlaskFastAPI类型全功能框架微框架现代异步框架学习曲线较陡峭平缓中等内置功能ORM,Admin,Auth,模板仅基础路由和模板自动文档,数据
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- 【AI成长会】针对高并发场景下基于用户ID的聊天接口优化方案,包含5个核心方法
以下是针对高并发场景下基于用户ID的聊天接口优化方案,包含5个核心方法、对比表格及权威来源:5大优化方案1.索引优化机制:对user_id字段添加B+树索引,联合查询字段使用覆盖索引(如(user_id,timestamp))优化点:减少全表扫描,提升索引命中率适用场景:基础优化,所有规模均需2.缓存层引入(Redis/Memcached)机制:使用Redis存储用户最近聊天记录(Key:user
- 大模型商用格局雏形初现:Tokens用量决高下,火山引擎问鼎2024
QbitAl
火山引擎人工智能
明敏发自凹非寺量子位|公众号QbitAI大模型应用落地元年,谁家业务更值得关注?Tokens使用量,正在成为最关键的衡量指标。量子位结合市场数据观察,2024下半年国内大模型商用落地日均Tokens消耗量翻了近10倍,从1000亿级规模到10000亿规模,只用了6个月,月复合增长率达到45%。其中,10-12月增长进一步提速。其中,只有1家云厂商商用Tokens日均消耗量的月均复合增长率超过60%
- 深入理解提示词工程:原理、分类与实战应用
小雷FansUnion
AI2025人工智能
一、什么是提示词工程(PromptEngineering)提示词工程是指通过设计和优化与大模型(如ChatGPT、文心一言等)交互的“提示词(Prompt)”,以获得更准确、更高效、更符合预期的模型输出结果的技术和方法。它是大模型应用开发中的核心环节。二、提示词的主要类型1.系统提示词(SystemPrompt)由开发者或系统设定,通常在对话开始时就注入,定义AI的角色、行为边界、风格、输出格式等
- FastAPI vs Flask vs Django:Python Web框架全面对比
天天进步2015
pythonpythonfastapiflask
Python作为最受欢迎的编程语言之一,其Web开发生态极为丰富。FastAPI、Flask和Django是当前主流的三大PythonWeb框架,各有千秋。本文将从架构设计、开发效率、性能表现、生态支持、适用场景等方面,全面对比这三大框架,帮助开发者选择最适合自己的技术栈。目录框架简介架构设计与理念开发效率与易用性性能对比生态与扩展性典型应用场景总结与选型建议参考资料框架简介FastAPI定位:新
- 免费实时AI图片编辑工具-多模态大模型:GPT-4o、grok、豆包、BAGEL、MagicQuill、OmniGen2
loong_XL
AIGCaigc
纯自然语言对话实现图像编辑;参考https://zhuanlan.zhihu.com/p/1890036563586577897GPT-4ohttps://chatgpt.com/geminihttps://gemini.google.com/grokhttps://grok.com/?referrer=website
- 模型性能评估实战:解密大模型准确率与召回率的计算逻辑与业务权衡
在AI项目落地过程中,模型性能评估是关键一步。想必大家都听过这样的案例:某医疗AI项目中,一个在测试集上准确率达到98%的肺癌筛查模型,实际部署后却遗漏了20%的早期癌变患者。无独有偶,某银行风控系统中,一个标榜着99.5%“高准确率”的模型,实际使用中却放过了90%的信用卡欺诈行为。这些案例都给我们敲响了警钟,模型性能评估中存在不少被忽视的致命盲区,今天就让我们一同深入探寻这其中的奥秘。第一部分
- 【爆款长文】RAG检索增强大模型的“记忆力”革命:Contextual Chunk Headers(CCH)实战全解析
许泽宇的技术分享
人工智能机器学习
大家好,我是你们的AI技术侃侃而谈小能手。今天我们来聊聊RAG(Retrieval-AugmentedGeneration)这个AI圈的“记忆力补脑丸”,以及它最近新晋的“脑白金”——ContextualChunkHeaders(CCH)。别眨眼,这可是让大模型“查资料”能力质变的秘密武器!一、RAG:让大模型不再“张口就胡说”先来个小科普。RAG是什么?简单说,就是给大模型加个“外挂”,让它在回
- 使用UmiJS框架开发React
汇智知了堂
前端理论知识reactjava
1、什么是Umi.js?umi,中文可发音为乌米,是一个可插拔的企业级react应用框架。你可以将它简单的理解为一个专注性能的类next.js前端框架,并通过约定、自动生成和解析代码等方式来辅助开发,减少我们开发者的代码量。2、为什么使用Umi.js?我们做react开发的时候会不会遇到以下问题?:2.1项目做大的时候,开发调试的启动和热更新时间会变得很长。2.2大应用下,网站打开很慢,有没有办法
- 【PyTorch】分布式训练报错记录-ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1)
XuecWu3
pytorch分布式人工智能深度学习
最近,我在服务器上起基于PyTorch分布式框架的预训练实验,起初实验都在顺利进行,但是当我们把模型的深度与宽度调大之后,模型在训练几代之后便会出现如下的报错:WARNING:torch.distributed.elastic.multiprocessing.api:Sendingprocess41495closingsignalSIGTERMWARNING:torch.distributed.e
- Veo 3 视频生成大模型完整操作教程(2025)
迎风斯黄
音视频人工智能
随着AI多模态能力的飞跃,GoogleDeepMind发布的Veo3成为了生成视频领域的一颗重磅炸弹。它不仅能够根据文本生成高质量的视频画面,还能同步生成对白、背景音和环境音,是目前最接近真正“AI导演”的大模型。本文将带你详细了解Veo3的功能、使用方式、提示词撰写技巧,以及完整的创作流程,适合希望用AI快速生成短视频、概念片段、广告、剧情短片等内容的创作者与开发者。一、Veo3是什么?Veo3
- 嵌入式环境下的C++最佳实践
is0815
c++开发语言
目标:学习嵌入式环境下的C++最佳实践内存管理优化:避免动态分配为什么避免动态分配?堆内存分配(如malloc,new)开销大,速度慢。堆内存容易导致碎片化,增加内存压力。动态分配增加内存泄漏、使用后未释放等风险。实时、高性能系统(嵌入式、游戏引擎)尤其需要优化内存管理。栈vs堆的性能对比特性栈(stack)堆(heap)分配/释放速度极快(O(1))较慢(需管理分配表,O(logn)或更慢)生命
- DeepSeek R1 Android本地化部署
Dawson_Jiang
大模型deepseekollamaAI大模型手机部署deepseek
1.概述android手机端部署deepseek一般需要安装termux,ollama,deepseek三个大的步骤原因分析:deepseek等大模型需要类似ollama的工具去运行。ollama有macwindow和linux版本,无Android版本;termux是一个模拟linux环境的Androidapp,在此环境中即可安装运行ollamalinux版本,然后再ollama上面部署运行de
- 配网体验大跃升!Matter 1.4.1让家居互联“一气呵成”
华普微HOPERF
华普动态科普生态物联网科技
智能家居,作为全体人类追求理想人居环境的终极愿景,具备着庞大的商业潜力,并吸引了无数企业凝聚资源投身于此。然而,在单品智能迈向全屋智能的发展路径上,除了要解决智能家居设备间的通信兼容问题外,还要在用户体验层面上去解决智能家居设备配网流程繁琐冗长的问题。近日,为提升用户体验,解决“配网焦虑”这一行业痛点,连接标准联盟(CSA)正式发布了能让用户轻松的配置智能家居设备的Matter1.4.1版本。本次
- 储能业 | 低成本部署!DolphinDB 打造抽水蓄能一体化解决方案
DolphinDB智臾科技
物联网数据库大数据DolphinDB实时计算抽水蓄能电力
导语在电力行业抽水蓄电场景中,电力集团可以基于DolphinDB搭建轻量化实时数仓,有效破解高频数据写入、万亿级数据存储和秒级实时计算等核心难题。同时,该方案助力集团降本增效,提升运维效率,并实现对多个电站数据的统一管理与调度,加快数字化转型步伐。一、行业背景构建清洁低碳、安全高效的新型能源电力系统是实现“双碳”目标的一大关键任务。其中,抽水蓄能作为当前最成熟、最具规模化应用前景的物理储能技术,正
- 合规型区块链RWA系统解决方案报告——机构资产数字化的终极武器
Ashlee_guweng22346
区块链需求分析架构pythoneclipsec#git
(跨境金融科技解决方案白皮书)一、直击机构客户四大痛点痛点传统方案缺陷我们的破局点✖️跨境资产流动性差结算周期30+天,摩擦成本超8%▶️7×24h全球实时交易(速度提升90%)✖️合规成本飙升KYC/AML人工审核占成本35%+▶️自动化合规引擎(成本降低50%)✖️资产透明度缺失多层中介导致权属不清▶️链上全生命周期溯源(100%防篡改)✖️新型资产配置难非标资产难分割、难定价▶️碎片化代币发
- 鸿蒙关系型数据库实战:高效数据存储与管理
数据库harmonyos
在鸿蒙应用开发中,关系型数据库(RDB)是结构化数据存储的核心方案。通过深度实践,其基于SQLite的轻量级实现不仅性能出色,更提供了强大的事务支持和类型安全。以下是关键经验总结:三大核心优势:SQL兼容:完整支持SQL92标准语法线程安全:内置多线程读写锁机制加密存储:支持AES-256加密敏感数据关系型数据库实战封装及使用:在Utils目录下新建一个RdbUtils文件//./src/main
- manjaro linux桌面更换
tboqi1
linuxmanjarokdexfcedeepin
本来安装的xfce版本的manjaro装好后安装了输入法qq微信等,还是喜欢win10那种小图标的样子,然后开始折腾,换其他桌面先是换成了deepin桌面,网上有教程,不过是kde-》deepin,能用---换入deepin桌面后感觉确实比xfce桌面好用,但opera无法打开(不喜欢firefox上面一大条标题,Opera比较简洁),不知道为什么(请路过的高手指点一下)--继续折腾,换成kde桌
- Python开发AI智能体(三)———Langchain定义提示词模板
【本人】
Agent智能体python人工智能langchain语言模型
前言上篇文章给大家介绍AI项目检测平台LangSmish以及开源框架Langchain的使用,并且带领大家编写了一个案例。这篇文章将介绍在Langchain框架中如何定义提示词模板一、什么是提示词模板?提示词模板(PromptTemplate)是大语言模型(LLM)应用开发中的核心概念,本质是预定义的提示结构框架。它通过将静态文本与动态变量结合,实现标准化、可复用的提示生成机制。它提示词可以是一个
- 项目管理10大知识领域,49个管理过程关键知识点梳理
℃-柠檬
职场和发展其他
一、项目整合管理1、制定项目章程输入:商业文件(商业论证、效益管理计划)、协议工具技术:专家判断、头脑风暴、焦点小组、访谈输出:项目章程、假设日志2、制定项目管理计划输入:项目章程、其他工程输出工具技术:专家判断、头脑风暴、核对单、焦点小组、访谈输出:项目管理计划3、指导与管理项目工作输入:项目管理计划、项目文件、批准的变更请求工具技术:项目管理信息系统、会议输出:可交付成果、工作绩效数据、问题日
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C