http://blog.chinaunix.net/space.php?uid=12567959&do=blog&id=160981
最终__libc_open64又调用了__libc_open函数,这个函数在文件libc/sysdeps/linux/common/open.c中定义:
libc_hidden_proto(__libc_open)
int __libc_open(const char *file, int oflag, ...)
{
mode_t mode = 0;
if (oflag & O_CREAT) {
va_list arg;
va_start (arg, oflag);
mode = va_arg (arg, mode_t);
va_end (arg);
}
return __syscall_open(file, oflag, mode);
}
libc_hidden_def(__libc_open)
这个函数,也是仅仅根据打开标志oflag的值,来判断是否有第三个参数,若由,则获得其值。之后,便用获得的参数来调用__syscall_open(file, oflag, mode)。
__syscall_open在同一个文件中定义:
static __inline__ _syscall3(int, __syscall_open, const char *, file,
int, flags, __kernel_mode_t, mode)
在文件libc/sysdeps/linux/arm/bits/syscalls.h文件中可以看到:
#undef _syscall3
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type name(type1 arg1,type2 arg2,type3 arg3) \
{ \
return (type) (INLINE_SYSCALL(name, 3, arg1, arg2, arg3)); \
}
这个宏实际上完成定义一个函数的工作,宏的第一个参数是函数的返回值类型,第二个参数是函数名,之后的参数就如同它们的参数名所表明的那样,分别是函数的参数类型及参数名。__syscall_open实际上为:
int __syscall_open (const char * file,int flags, __kernel_mode_t mode)
{
return (int) (INLINE_SYSCALL(__syscall_open, 3, file, flags, mode));
}
INLINE_SYSCALL为同一个文件中定义的宏:
#undef INLINE_SYSCALL
#define INLINE_SYSCALL(name, nr, args...) \
({ unsigned int _inline_sys_result = INTERNAL_SYSCALL (name, , nr, args); \
if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (_inline_sys_result, ), 0)) \
{ \
__set_errno (INTERNAL_SYSCALL_ERRNO (_inline_sys_result, )); \
_inline_sys_result = (unsigned int) -1; \
} \
(int) _inline_sys_result; })
INLINE_SYSCALL宏中最值得注意的是INTERNAL_SYSCALL,其定义如下:
#undef INTERNAL_SYSCALL
#if !defined(__thumb__)
#if defined(__ARM_EABI__)
#define INTERNAL_SYSCALL(name, err, nr, args...) \
({unsigned int __sys_result; \
{ \
register int _a1 __asm__ ("r0"), _nr __asm__ ("r7"); \
LOAD_ARGS_##nr (args) \
_nr = SYS_ify(name); \
__asm__ __volatile__ ("swi 0x0 @ syscall " #name \
: "=r" (_a1) \
: "r" (_nr) ASM_ARGS_##nr \
: "memory"); \
__sys_result = _a1; \
} \
(int) __sys_result; })
#else /* defined(__ARM_EABI__) */
#define INTERNAL_SYSCALL(name, err, nr, args...) \
({ unsigned int __sys_result; \
{ \
register int _a1 __asm__ ("a1"); \
LOAD_ARGS_##nr (args) \
__asm__ __volatile__ ("swi %1 @ syscall " #name \
: "=r" (_a1) \
: "i" (SYS_ify(name)) ASM_ARGS_##nr \
: "memory"); \
__sys_result = _a1; \
} \
(int) __sys_result; })
#endif
这里也将同文件中的LOAD_ARGS宏的定义贴出来:
#define LOAD_ARGS_0()
#define ASM_ARGS_0
#define LOAD_ARGS_1(a1) \
_a1 = (int) (a1); \
LOAD_ARGS_0 ()
#define ASM_ARGS_1 ASM_ARGS_0, "r" (_a1)
#define LOAD_ARGS_2(a1, a2) \
register int _a2 __asm__ ("a2") = (int) (a2); \
LOAD_ARGS_1 (a1)
#define ASM_ARGS_2 ASM_ARGS_1, "r" (_a2)
#define LOAD_ARGS_3(a1, a2, a3) \
register int _a3 __asm__ ("a3") = (int) (a3); \
LOAD_ARGS_2 (a1, a2)
这几个宏用来在寄存器中加载相应的参数,参数传递的方式和普通的C函数也没有什么太大的区别,同样都是将参数列表中的参数依次放入寄存器r0、r1、r2、r3…中。
上面的SYS_ify(name)宏,是用来获得系统调用号的。
#define SYS_ify(syscall_name) (__NR_##syscall_name)
也就是__NR___syscall_open,在libc/sysdeps/linux/common/open.c中可以看到这个宏的定义:
#define __NR___syscall_open __NR_open
__NR_open在内核代码的头文件中有定义。
在这里我们忽略定义__thumb__的情况,而假设我们编译出来的库函数使用的都是ARM指令集。在上面的代码中,我们看到,根据是否定义宏__ARM_EABI__,INTERNAL_SYSCALL会被展开为两种不同的版本。关于这一点,与应用二进制接口ABI有关,不同的ABI,则会有不同的传递系统调用号的方法。对于比较新的EABI,则在r7寄存器保存系统调用号,通过swi 0x0来陷入内核。否则,通过swi指令的24位立即数参数来传递系统调用号。后面还会有内核中关于这个问题的更详细的说明。
同时这两种调用方式的系统调用号也是存在这区别的,在内核的文件arch/arm/inclue/asm/unistd.h中可以看到:
#define __NR_OABI_SYSCALL_BASE 0x900000
#if defined(__thumb__) || defined(__ARM_EABI__)
#define __NR_SYSCALL_BASE 0
#else
#define __NR_SYSCALL_BASE __NR_OABI_SYSCALL_BASE
#endif
/*
* This file contains the system call numbers.
*/
#define __NR_restart_syscall (__NR_SYSCALL_BASE+ 0)
#define __NR_exit (__NR_SYSCALL_BASE+ 1)
#define __NR_fork (__NR_SYSCALL_BASE+ 2)
#define __NR_read (__NR_SYSCALL_BASE+ 3)
#define __NR_write (__NR_SYSCALL_BASE+ 4)
#define __NR_open (__NR_SYSCALL_BASE+ 5)
……
接下来来看操作系统对系统调用的处理。我们回到ARM Linux的异常向量表,因为当执行swi时,会从异常向量表中取例程的地址从而跳转到相应的处理程序中。在文件arch/arm/kernel/entry-armv.S中我们看到SWI异常向量:
W(ldr) pc, .LCvswi + stubs_offset
而.LCvswi在同一个文件中定义为:
.LCvswi:
.word vector_swi
也就是最终会执行例程vector_swi来完成对系统调用的处理,接下来我们来看下在arch/arm/kernel/entry-common.S中定义的vector_swi例程(删去一些和我们的示例平台无关的代码):
.align 5
ENTRY(vector_swi)
sub sp, sp, #S_FRAME_SIZE
stmia sp, {r0 - r12} @ Calling r0 - r12
ARM( add r8, sp, #S_PC )
ARM( stmdb r8, {sp, lr}^ ) @ Calling sp, lr
mrs r8, spsr @ called from non-FIQ mode, so ok.
str lr, [sp, #S_PC] @ Save calling PC
str r8, [sp, #S_PSR] @ Save CPSR
str r0, [sp, #S_OLD_R0] @ Save OLD_R0
zero_fp
/* Get the system call number. */
#if defined(CONFIG_OABI_COMPAT)
/*
* If we have CONFIG_OABI_COMPAT then we need to look at the swi
* value to determine if it is an EABI or an old ABI call.
*/
ldr r10, [lr, #-4] @ get SWI instruction
#ifdef CONFIG_CPU_ENDIAN_BE8
//rev指令的功能是反转字中的字节序
rev r10, r10 @ little endian instruction
#endif
#elif defined(CONFIG_AEABI)
…
#else
/* Legacy ABI only. */
ldr scno, [lr, #-4] @ get SWI instruction
#endif
#ifdef CONFIG_ALIGNMENT_TRAP
ldr ip, __cr_alignment
ldr ip, [ip]
mcr p15, 0, ip, c1, c0 @ update control register
#endif
enable_irq
// tsk 是寄存器r9的别名,在arch/arm/kernel/entry-header.S中定义:// tsk .req r9 @ current thread_info
// 获得线程对象的基地址。
get_thread_info tsk
// tbl是r8寄存器的别名,在arch/arm/kernel/entry-header.S中定义:
// tbl .req r8 @ syscall table pointer,
// 用来存放系统调用表的指针,系统调用表在后面调用
adr tbl, sys_call_table @ load syscall table pointer
ldr ip, [tsk, #TI_FLAGS] @ check for syscall tracing
#if defined(CONFIG_OABI_COMPAT)
/*
* If the swi argument is zero, this is an EABI call and we do nothing.
*
* If this is an old ABI call, get the syscall number into scno and
* get the old ABI syscall table address.
*/
bics r10, r10, #0xff000000
eorne scno, r10, #__NR_OABI_SYSCALL_BASE
ldrne tbl, =sys_oabi_call_table
#elif !defined(CONFIG_AEABI)
// scno是寄存器r7的别名
bic scno, scno, #0xff000000 @ mask off SWI op-code
eor scno, scno, #__NR_SYSCALL_BASE @ check OS number
#endif
stmdb sp!, {r4, r5} @ push fifth and sixth args
tst ip, #_TIF_SYSCALL_TRACE @ are we tracing syscalls?
bne __sys_trace
cmp scno, #NR_syscalls @ check upper syscall limit
adr lr, BSYM(ret_fast_syscall) @ return address
ldrcc pc, [tbl, scno, lsl #2] @ call sys_* routine
add r1, sp, #S_OFF
// why也是r8寄存器的别名
2: mov why, #0 @ no longer a real syscall
cmp scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)
eor r0, scno, #__NR_SYSCALL_BASE @ put OS number back
bcs arm_syscall
b sys_ni_syscall @ not private func
ENDPROC(vector_swi)
上面的zero_fp是一个宏,在arch/arm/kernel/entry-header.S中定义:
.macro zero_fp
#ifdef CONFIG_FRAME_POINTER
mov fp, #0
#endif
.endm
而fp位寄存器r11。
像每一个异常处理程序一样,要做的第一件事当然就是保护现场了。紧接着是获得系统调用的系统调用号。然后以系统调用号作为索引来查找系统调用表,如果系统调用号正常的话,就会调用相应的处理例程来处理,就是上面的那个ldrcc pc, [tbl, scno, lsl #2]语句,然后通过例程ret_fast_syscall来返回。
在这个地方我们接着来讨论ABI的问题。现在,我们首先来看两个宏,一个是CONFIG_OABI_COMPAT 意思是说与old ABI兼容,另一个是CONFIG_AEABI 意思是说指定现在的方式为EABI。这两个宏可以同时配置,也可以都不配,也可以配置任何一种。我们来看一下内核是怎么处理这一问题的。我们知道,sys_call_table 在内核中是个跳转表,这个表中存储的是一系列的函数指针,这些指针就是系统调用函数的指针,如(sys_open)。内核是根据一个系统调用号(对于EABI来说为系统调用表的索引)找到实际该调用内核哪个函数,然后通过运行该函数完成系统调用的。
首先,对于old ABI,内核给出的处理是为它建立一个单独的system call table,叫sys_oabi_call_table。这样,兼容方式下就会有两个system call table, 以old ABI方式的系统调用会执行old_syscall_table表中的系统调用函数,EABI方式的系统调用会用sys_call_table中的函数指针。
配置无外乎以下4中:
第一、两个宏都配置行为就是上面说的那样。
第二、只配置CONFIG_OABI_COMPAT,那么以old ABI方式调用的会用sys_oabi_call_table,以EABI方式调用的用sys_call_table,和1实质上是相同的。只是情况1更加明确。
第三、只配置CONFIG_AEABI系统中不存在sys_oabi_call_table,对old ABI方式调用不兼容。只能 以EABI方式调用,用sys_call_table。
第四、两个都没有配置,系统默认会只允许old ABI方式,但是不存在old_syscall_table,最终会通过sys_call_table 完成函数调用
系统会根据ABI的不同而将相应的系统调用表的基地址加载进tbl寄存器,也就是r8寄存器。接下来来看系统调用表,如前面所说的那样,有两个,同样都在文件arch/arm/kernel/entry-armv.S中:
#define ABI(native, compat) native
#ifdef CONFIG_AEABI
#define OBSOLETE(syscall) sys_ni_syscall
#else
#define OBSOLETE(syscall) syscall
#endif
.type sys_call_table, #object
ENTRY(sys_call_table)
#include "calls.S"
#undef ABI
#undef OBSOLETE
另外一个为:
#define ABI(native, compat) compat
#define OBSOLETE(syscall) syscall
.type sys_oabi_call_table, #object
ENTRY(sys_oabi_call_table)
#include "calls.S"
#undef ABI
#undef OBSOLETE
这样看来貌似两个系统调用表是完全一样的。这里预处理指令include的独特用法也挺有意思,系统调用表的内容就是整个arch/arm/kernel/calls.S文件的内容(由于太长,这里就不全部列出了):
/* 0 */ CALL(sys_restart_syscall)
CALL(sys_exit)
CALL(sys_fork_wrapper)
CALL(sys_read)
CALL(sys_write)
/* 5 */ CALL(sys_open)
CALL(sys_close)
……
上面的CALL()是个宏,它同样在文件arch/arm/kernel/entry-armv.S中定义:
#define CALL(x) .equ NR_syscalls,NR_syscalls+1
#include "calls.S"
#undef CALL
#define CALL(x) .long x
在定义宏CALL()的地方,我们看到calls.S已经被包含了一次,只不过在这里,不是为了建立系统调用表,而仅仅是为了获得系统的系统调用的数量,并保存在宏NR_syscalls中。在SWI向量中,我们也看到,是使用了这个宏的。
最后再罗嗦一点,如果用sys_open来搜的话,是搜不到系统调用open的定义的,系统调用函数都是用宏来定义的,比如对于open,有这样的定义:
---------------------------------------------------------------------
fs/open.c
1066 SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, int, mode)
1067 {
1068 long ret;
1069
1070 if (force_o_largefile())
1071 flags |= O_LARGEFILE;
1072
1073 ret = do_sys_open(AT_FDCWD, filename, flags, mode);
1074 /* avoid REGPARM breakage on x86: */
1075 asmlinkage_protect(3, ret, filename, flags, mode);
1076 return ret;
1077 }
---------------------------------------------------------------------
继续回到vector_swi,如果系统调用号不正确,则会调用arm_syscall函数来进行处理,这个函数定义如下:
---------------------------------------------------------------------
arch/arm/kernel/traps.c
465 #define NR(x) ((__ARM_NR_##x) - __ARM_NR_BASE)
466 asmlinkage int arm_syscall(int no, struct pt_regs *regs)
467 {
468 struct thread_info *thread = current_thread_info();
469 siginfo_t info;
470
471 if ((no >> 16) != (__ARM_NR_BASE>> 16))
472 return bad_syscall(no, regs);
473
474 switch (no & 0xffff) {
475 case 0: /* branch through 0 */
476 info.si_signo = SIGSEGV;
477 info.si_errno = 0;
478 info.si_code = SEGV_MAPERR;
479 info.si_addr = NULL;
480
481 arm_notify_die("branch through zero", regs, &info, 0, 0);
482 return 0;
483
484 case NR(breakpoint): /* SWI BREAK_POINT */
485 regs->ARM_pc -= thumb_mode(regs) ? 2 : 4;
486 ptrace_break(current, regs);
487 return regs->ARM_r0;
488
489 /*
490 * Flush a region from virtual address 'r0' to virtual address 'r1'
491 * _exclusive_. There is no alignment requirement on either address;
492 * user space does not need to know the hardware cache layout.
493 *
494 * r2 contains flags. It should ALWAYS be passed as ZERO until it
495 * is defined to be something else. For now we ignore it, but may
496 * the fires of hell burn in your belly if you break this rule. ;)
497 *
498 * (at a later date, we may want to allow this call to not flush
499 * various aspects of the cache. Passing '' will guarantee that
500 * everything necessary gets flushed to maintain consistency in
501 * the specified region).
502 */
503 case NR(cacheflush):
504 do_cache_op(regs->ARM_r0, regs->ARM_r1, regs->ARM_r2);
505 return 0;
506
507 case NR(usr26):
508 if (!(elf_hwcap & HWCAP_26BIT))
509 break;
510 regs->ARM_cpsr &= ~MODE32_BIT;
511 return regs->ARM_r0;
512
513 case NR(usr32):
514 if (!(elf_hwcap & HWCAP_26BIT))
515 break;
516 regs->ARM_cpsr |= MODE32_BIT;
517 return regs->ARM_r0;
518
519 case NR(set_tls):
520 thread->tp_value = regs->ARM_r0;
521 #if defined(CONFIG_HAS_TLS_REG)
522 asm ("mcr p15, 0, %0, c13, c0, 3" : : "r" (regs->ARM_r0) );
523 #elif !defined(CONFIG_TLS_REG_EMUL)
524 /*
525 * User space must never try to access this directly.
526 * Expect your app to break eventually if you do so.
527 * The user helper at 0xffff0fe0 must be used instead.
528 * (see entry-armv.S for details)
529 */
530 *((unsigned int *)0xffff0ff0) = regs->ARM_r0;
531 #endif
532 return 0;
533
534 #ifdef CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG
535 /*
536 * Atomically store r1 in *r2 if *r2 is equal to r0 for user space.
537 * Return zero in r0 if *MEM was changed or non-zero if no exchange
538 * happened. Also set the user C flag accordingly.
539 * If access permissions have to be fixed up then non-zero is
540 * returned and the operation has to be re-attempted.
541 *
542 * *NOTE*: This is a ghost syscall private to the kernel. Only the
543 * __kuser_cmpxchg code in entry-armv.S should be aware of its
544 * existence. Don't ever use this from user code.
545 */
546 case NR(cmpxchg):
547 for (;;) {
548 extern void do_DataAbort(unsigned long addr, unsigned int fsr,
549 struct pt_regs *regs);
550 unsigned long val;
551 unsigned long addr = regs->ARM_r2;
552 struct mm_struct *mm = current->mm;
553 pgd_t *pgd; pmd_t *pmd; pte_t *pte;
554 spinlock_t *ptl;
555
556 regs->ARM_cpsr &= ~PSR_C_BIT;
557 down_read(&mm->mmap_sem);
558 pgd = pgd_offset(mm, addr);
559 if (!pgd_present(*pgd))
560 goto bad_access;
561 pmd = pmd_offset(pgd, addr);
562 if (!pmd_present(*pmd))
563 goto bad_access;
564 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
565 if (!pte_present(*pte) || !pte_dirty(*pte)) {
566 pte_unmap_unlock(pte, ptl);
567 goto bad_access;
568 }
569 val = *(unsigned long *)addr;
570 val -= regs->ARM_r0;
571 if (val == 0) {
572 *(unsigned long *)addr = regs->ARM_r1;
573 regs->ARM_cpsr |= PSR_C_BIT;
574 }
575 pte_unmap_unlock(pte, ptl);
576 up_read(&mm->mmap_sem);
577 return val;
578
579 bad_access:
580 up_read(&mm->mmap_sem);
581 /* simulate a write access fault */
582 do_DataAbort(addr, 15 + (1 << 11), regs);
583 }
584 #endif
585
586 default:
587 /* Calls 9f00xx..9f07ff are defined to return -ENOSYS
588 if not implemented, rather than raising SIGILL. This
589 way the calling program can gracefully determine whether
590 a feature is supported. */
591 if ((no & 0xffff) <= 0x7ff)
592 return -ENOSYS;
593 break;
594 }
595 #ifdef CONFIG_DEBUG_USER
596 /*
597 * experience shows that these seem to indicate that
598 * something catastrophic has happened
599 */
600 if (user_debug & UDBG_SYSCALL) {
601 printk("[%d] %s: arm syscall %d\n",
602 task_pid_nr(current), current->comm, no);
603 dump_instr("", regs);
604 if (user_mode(regs)) {
605 __show_regs(regs);
606 c_backtrace(regs->ARM_fp, processor_mode(regs));
607 }
608 }
609 #endif
610 info.si_signo = SIGILL;
611 info.si_errno = 0;
612 info.si_code = ILL_ILLTRP;
613 info.si_addr = (void __user *)instruction_pointer(regs) -
614 (thumb_mode(regs) ? 2 : 4);
615
616 arm_notify_die("Oops - bad syscall(2)", regs, &info, no, 0);
617 return 0;
618 }
---------------------------------------------------------------------
这个函数处理所有的辨别不出来的系统调用。系统调用号正确也好不正确也好,最终都是通过ret_fast_syscall例程来返回,因为我们看到,在进入系统调用处理函数之前,先加载了符号ret_fast_syscall进lr寄存器。ret_fast_syscall定义如下:
---------------------------------------------------------------------
arch/arm/kernel/entry-common.S
ret_fast_syscall:
UNWIND(.fnstart )
UNWIND(.cantunwind )
disable_irq @ disable interrupts
ldr r1, [tsk, #TI_FLAGS]
tst r1, #_TIF_WORK_MASK
bne fast_work_pending
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
restore_user_regs fast = 1, offset = S_OFF
UNWIND(.fnend )
fast_work_pending:
str r0, [sp, #S_R0+S_OFF]! @ returned r0
work_pending:
tst r1, #_TIF_NEED_RESCHED
bne work_resched
tst r1, #_TIF_SIGPENDING|_TIF_NOTIFY_RESUME
beq no_work_pending
mov r0, sp @ 'regs'
mov r2, why @ 'syscall'
bl do_notify_resume
b ret_slow_syscall @ Check work again
work_resched:
bl schedule
/*
* "slow" syscall return path. "why" tells us if this was a real syscall.
*/
ENTRY(ret_to_user)
ret_slow_syscall:
disable_irq @ disable interrupts
ldr r1, [tsk, #TI_FLAGS]
tst r1, #_TIF_WORK_MASK
bne work_pending
no_work_pending:
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
restore_user_regs fast = 0, offset = 0
ENDPROC(ret_to_user)
---------------------------------------------------------------------
对于我们的平台来说,上面的arch_ret_to_user为空。restore_user_regs宏用于恢复现场并返回,restore_user_regs宏定义如下:
---------------------------------------------------------------------
arch/arm/kernel/entry-header.S
.macro restore_user_regs, fast = 0, offset = 0
ldr r1, [sp, #\offset + S_PSR] @ get calling cpsr
ldr lr, [sp, #\offset + S_PC]! @ get pc
msr spsr_cxsf, r1 @ save in spsr_svc
#if defined(CONFIG_CPU_32v6K)
clrex @ clear the exclusive monitor
#elif defined (CONFIG_CPU_V6)
strex r1, r2, [sp] @ clear the exclusive monitor
#endif
.if \fast
ldmdb sp, {r1 - lr}^ @ get calling r1 - lr
.else
ldmdb sp, {r0 - lr}^ @ get calling r0 - lr
.endif
mov r0, r0 @ ARMv5T and earlier require a nop
@ after ldm {}^
add sp, sp, #S_FRAME_SIZE - S_PC
movs pc, lr @ return & move spsr_svc into cpsr
.endm
---------------------------------------------------------------------
添加新的系统调用
第一、打开arch/arm/kernel/calls.S,在最后添加系统调用的函数原型的指针,例如:
CALL(sys_set_senda)
补充说明一点关于NR_syscalls的东西,这个常量表示系统调用的总的个数,在较新版本的内核中,文件arch/arm/kernel/entry-common.S中可以找到:
.equ NR_syscalls,0
#define CALL(x) .equ NR_syscalls,NR_syscalls+1
#include "calls.S"
#undef CALL
#define CALL(x) .long x
相当的巧妙,不是吗?在系统调用表中每添加一个系统调用,NR_syscalls就自动增加一。在这个地方先求出NR_syscalls,然后重新定义CALL(x)宏,这样也可以不影响文件后面系统调用表的建立。
第二、打开include/asm-arm/unistd.h,添加系统调用号的宏,感觉这步可以省略,因为这个地方定义的系统调用号主要是个C库,比如uClibc、Glibc用的。例如:
#define __NR_plan_set_senda (__NR_SYSCALL_BASE+365)
为了向后兼容,系统调用只能增加而不能减少,这里的编号添加时,也必须按顺序来。否则会导致核心运行错误。
第三,实例化该系统调用,即编写新添加系统调用的实现例如:
SYSCALL_DEFINE1(set_senda, int,iset)
{
if(iset)
UART_PUT_CR(&at91_port[2],AT91C_US_SENDA);
else
UART_PUT_CR(&at91_port[2],AT91C_US_RSTSTA);
return 0;
}
第四、打开include/linux/syscalls.h添加函数声明
asmlinkage long sys_set_senda(int iset);
第五、在应用程序中调用该系统调用,可以参考uClibc的实现。
第六、结束。
参考文档:
[精华] arm Linux 2.6高版本中的系统调用方式
http://www.unixresources.net/linux/clf/linuxK/archive/00/00/67/92/679297.html
ARM Linux下添加新的系统调用
http://blog.sina.com.cn/s/blog_3e681643010009h9.html