ARM Linux系统调用的原理

http://blog.chinaunix.net/space.php?uid=12567959&do=blog&id=160981

 

最终__libc_open64又调用了__libc_open函数,这个函数在文件libc/sysdeps/linux/common/open.c中定义:

libc_hidden_proto(__libc_open)

int __libc_open(const char *file, int oflag, ...)

{

   mode_t mode = 0;

 

   if (oflag & O_CREAT) {

      va_list arg;

      va_start (arg, oflag);

      mode = va_arg (arg, mode_t);

      va_end (arg);

   }

 

   return __syscall_open(file, oflag, mode);

}

libc_hidden_def(__libc_open)

这个函数,也是仅仅根据打开标志oflag的值,来判断是否有第三个参数,若由,则获得其值。之后,便用获得的参数来调用__syscall_open(file, oflag, mode)

 

__syscall_open在同一个文件中定义:

static __inline__ _syscall3(int, __syscall_open, const char *, file,

      int, flags, __kernel_mode_t, mode)

 

在文件libc/sysdeps/linux/arm/bits/syscalls.h文件中可以看到:

#undef _syscall3

#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \

type name(type1 arg1,type2 arg2,type3 arg3) \

{ \

return (type) (INLINE_SYSCALL(name, 3, arg1, arg2, arg3)); \

}

这个宏实际上完成定义一个函数的工作,宏的第一个参数是函数的返回值类型,第二个参数是函数名,之后的参数就如同它们的参数名所表明的那样,分别是函数的参数类型及参数名。__syscall_open实际上为:

int __syscall_open (const char * file,int flags, __kernel_mode_t mode)

{

return (int) (INLINE_SYSCALL(__syscall_open, 3, file, flags, mode));

}

 

INLINE_SYSCALL为同一个文件中定义的宏:

#undef INLINE_SYSCALL

#define INLINE_SYSCALL(name, nr, args...)            \

  ({ unsigned int _inline_sys_result = INTERNAL_SYSCALL (name, , nr, args);   \

     if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (_inline_sys_result, ), 0))  \

       {                        \

    __set_errno (INTERNAL_SYSCALL_ERRNO (_inline_sys_result, ));    \

    _inline_sys_result = (unsigned int) -1;          \

       }                        \

     (int) _inline_sys_result; })

 

INLINE_SYSCALL宏中最值得注意的是INTERNAL_SYSCALL,其定义如下:

#undef INTERNAL_SYSCALL

#if !defined(__thumb__)

#if defined(__ARM_EABI__)

#define INTERNAL_SYSCALL(name, err, nr, args...)        \

  ({unsigned int __sys_result;                 \

     {                          \

       register int _a1 __asm__ ("r0"), _nr __asm__ ("r7");    \

       LOAD_ARGS_##nr (args)                \

       _nr = SYS_ify(name);                 \

       __asm__ __volatile__ ("swi  0x0   @ syscall " #name  \

              : "=r" (_a1)            \

              : "r" (_nr) ASM_ARGS_##nr        \

              : "memory");            \

          __sys_result = _a1;               \

     }                          \

     (int) __sys_result; })

#else /* defined(__ARM_EABI__) */

 

#define INTERNAL_SYSCALL(name, err, nr, args...)        \

  ({ unsigned int __sys_result;                \

     {                          \

       register int _a1 __asm__ ("a1");               \

       LOAD_ARGS_##nr (args)                \

       __asm__ __volatile__ ("swi  %1 @ syscall " #name  \

           : "=r" (_a1)               \

           : "i" (SYS_ify(name)) ASM_ARGS_##nr    \

           : "memory");               \

       __sys_result = _a1;                  \

     }                          \

     (int) __sys_result; })

#endif

 

这里也将同文件中的LOAD_ARGS宏的定义贴出来:

#define LOAD_ARGS_0()

#define ASM_ARGS_0

#define LOAD_ARGS_1(a1)           \

  _a1 = (int) (a1);            \

  LOAD_ARGS_0 ()

#define ASM_ARGS_1 ASM_ARGS_0, "r" (_a1)

#define LOAD_ARGS_2(a1, a2)       \

  register int _a2 __asm__ ("a2") = (int) (a2);   \

  LOAD_ARGS_1 (a1)

#define ASM_ARGS_2 ASM_ARGS_1, "r" (_a2)

#define LOAD_ARGS_3(a1, a2, a3)         \

  register int _a3 __asm__ ("a3") = (int) (a3);   \

  LOAD_ARGS_2 (a1, a2)

这几个宏用来在寄存器中加载相应的参数,参数传递的方式和普通的C函数也没有什么太大的区别,同样都是将参数列表中的参数依次放入寄存器r0、r1、r2、r3…中。

 

上面的SYS_ify(name)宏,是用来获得系统调用号的。

#define SYS_ify(syscall_name)  (__NR_##syscall_name)

也就是__NR___syscall_open,在libc/sysdeps/linux/common/open.c中可以看到这个宏的定义:

#define __NR___syscall_open __NR_open

__NR_open在内核代码的头文件中有定义。

 

在这里我们忽略定义__thumb__的情况,而假设我们编译出来的库函数使用的都是ARM指令集。在上面的代码中,我们看到,根据是否定义宏__ARM_EABI__INTERNAL_SYSCALL会被展开为两种不同的版本。关于这一点,与应用二进制接口ABI有关,不同的ABI,则会有不同的传递系统调用号的方法。对于比较新的EABI,则在r7寄存器保存系统调用号,通过swi   0x0来陷入内核。否则,通过swi指令的24位立即数参数来传递系统调用号。后面还会有内核中关于这个问题的更详细的说明。

 

同时这两种调用方式的系统调用号也是存在这区别的,在内核的文件arch/arm/inclue/asm/unistd.h中可以看到:

#define __NR_OABI_SYSCALL_BASE 0x900000

 

#if defined(__thumb__) || defined(__ARM_EABI__)

#define __NR_SYSCALL_BASE   0

#else

#define __NR_SYSCALL_BASE   __NR_OABI_SYSCALL_BASE

#endif

 

/*

 * This file contains the system call numbers.

 */

#define __NR_restart_syscall      (__NR_SYSCALL_BASE+  0)

#define __NR_exit        (__NR_SYSCALL_BASE+  1)

#define __NR_fork        (__NR_SYSCALL_BASE+  2)

#define __NR_read        (__NR_SYSCALL_BASE+  3)

#define __NR_write       (__NR_SYSCALL_BASE+  4)

#define __NR_open        (__NR_SYSCALL_BASE+  5)

……

 

接下来来看操作系统对系统调用的处理。我们回到ARM Linux的异常向量表,因为当执行swi时,会从异常向量表中取例程的地址从而跳转到相应的处理程序中。在文件arch/arm/kernel/entry-armv.S中我们看到SWI异常向量:

   W(ldr) pc, .LCvswi + stubs_offset

而.LCvswi在同一个文件中定义为:

.LCvswi:

   .word vector_swi

 

也就是最终会执行例程vector_swi来完成对系统调用的处理,接下来我们来看下在arch/arm/kernel/entry-common.S中定义的vector_swi例程(删去一些和我们的示例平台无关的代码):

   .align 5

ENTRY(vector_swi)

   sub   sp, sp, #S_FRAME_SIZE

   stmia sp, {r0 - r12}        @ Calling r0 - r12

 ARM( add   r8, sp, #S_PC      )

 ARM( stmdb r8, {sp, lr}^      )  @ Calling sp, lr

   mrs   r8, spsr        @ called from non-FIQ mode, so ok.

   str   lr, [sp, #S_PC]       @ Save calling PC

   str   r8, [sp, #S_PSR]      @ Save CPSR

   str   r0, [sp, #S_OLD_R0]      @ Save OLD_R0

   zero_fp

 

   /* Get the system call number. */

#if defined(CONFIG_OABI_COMPAT)

 

   /*

    * If we have CONFIG_OABI_COMPAT then we need to look at the swi

    * value to determine if it is an EABI or an old ABI call.

    */

   ldr   r10, [lr, #-4]        @ get SWI instruction

#ifdef CONFIG_CPU_ENDIAN_BE8

//rev指令的功能是反转字中的字节序

   rev   r10, r10        @ little endian instruction

#endif

 

#elif defined(CONFIG_AEABI)

#else

 

   /* Legacy ABI only. */

   ldr   scno, [lr, #-4]       @ get SWI instruction

 

#endif

 

#ifdef CONFIG_ALIGNMENT_TRAP

   ldr   ip, __cr_alignment

   ldr   ip, [ip]

   mcr   p15, 0, ip, c1, c0    @ update control register

#endif

   enable_irq

 

   // tsk 是寄存器r9的别名,在arch/arm/kernel/entry-header.S中定义:// tsk .req  r9     @ current thread_info

   // 获得线程对象的基地址。

   get_thread_info tsk

 

   // tbl是r8寄存器的别名,在arch/arm/kernel/entry-header.S中定义:

   // tbl  .req   r8     @ syscall table pointer,

// 用来存放系统调用表的指针,系统调用表在后面调用

   adr   tbl, sys_call_table      @ load syscall table pointer

   ldr   ip, [tsk, #TI_FLAGS]     @ check for syscall tracing

 

#if defined(CONFIG_OABI_COMPAT)

   /*

    * If the swi argument is zero, this is an EABI call and we do nothing.

    *

    * If this is an old ABI call, get the syscall number into scno and

    * get the old ABI syscall table address.

    */

   bics  r10, r10, #0xff000000

   eorne scno, r10, #__NR_OABI_SYSCALL_BASE

   ldrne tbl, =sys_oabi_call_table

#elif !defined(CONFIG_AEABI)

    // scno是寄存器r7的别名

   bic   scno, scno, #0xff000000     @ mask off SWI op-code

   eor   scno, scno, #__NR_SYSCALL_BASE @ check OS number

#endif

 

   stmdb sp!, {r4, r5}         @ push fifth and sixth args

   tst   ip, #_TIF_SYSCALL_TRACE     @ are we tracing syscalls?

   bne   __sys_trace

 

   cmp   scno, #NR_syscalls    @ check upper syscall limit

   adr   lr, BSYM(ret_fast_syscall)  @ return address

   ldrcc pc, [tbl, scno, lsl #2]     @ call sys_* routine

 

   add   r1, sp, #S_OFF

// why也是r8寄存器的别名

2: mov   why, #0            @ no longer a real syscall

   cmp   scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)

   eor   r0, scno, #__NR_SYSCALL_BASE   @ put OS number back

   bcs   arm_syscall

   b  sys_ni_syscall        @ not private func

ENDPROC(vector_swi)

 

上面的zero_fp是一个宏,在arch/arm/kernel/entry-header.S中定义:

   .macro zero_fp

#ifdef CONFIG_FRAME_POINTER

   mov   fp, #0

#endif

   .endm

而fp位寄存器r11。

 

像每一个异常处理程序一样,要做的第一件事当然就是保护现场了。紧接着是获得系统调用的系统调用号。然后以系统调用号作为索引来查找系统调用表,如果系统调用号正常的话,就会调用相应的处理例程来处理,就是上面的那个ldrcc  pc, [tbl, scno, lsl #2]语句,然后通过例程ret_fast_syscall来返回。

 

在这个地方我们接着来讨论ABI的问题。现在,我们首先来看两个宏,一个是CONFIG_OABI_COMPAT 意思是说与old ABI兼容,另一个是CONFIG_AEABI 意思是说指定现在的方式为EABI。这两个宏可以同时配置,也可以都不配,也可以配置任何一种。我们来看一下内核是怎么处理这一问题的。我们知道,sys_call_table 在内核中是个跳转表,这个表中存储的是一系列的函数指针,这些指针就是系统调用函数的指针,如(sys_open)。内核是根据一个系统调用号(对于EABI来说为系统调用表的索引)找到实际该调用内核哪个函数,然后通过运行该函数完成系统调用的。

    首先,对于old ABI,内核给出的处理是为它建立一个单独的system call table,叫sys_oabi_call_table。这样,兼容方式下就会有两个system call table, 以old ABI方式的系统调用会执行old_syscall_table表中的系统调用函数,EABI方式的系统调用会用sys_call_table中的函数指针。
配置无外乎以下4中: 
第一、两个宏都配置行为就是上面说的那样。 
第二、只配置CONFIG_OABI_COMPAT,那么以old ABI方式调用的会用sys_oabi_call_table,以EABI方式调用的用sys_call_table,和1实质上是相同的。只是情况1更加明确。
第三、只配置CONFIG_AEABI系统中不存在sys_oabi_call_table,对old ABI方式调用不兼容。只能 以EABI方式调用,用sys_call_table。

第四、两个都没有配置,系统默认会只允许old ABI方式,但是不存在old_syscall_table,最终会通过sys_call_table 完成函数调用

 

系统会根据ABI的不同而将相应的系统调用表的基地址加载进tbl寄存器,也就是r8寄存器。接下来来看系统调用表,如前面所说的那样,有两个,同样都在文件arch/arm/kernel/entry-armv.S中:

#define ABI(native, compat) native

#ifdef CONFIG_AEABI

#define OBSOLETE(syscall) sys_ni_syscall

#else

#define OBSOLETE(syscall) syscall

#endif

 

   .type sys_call_table, #object

ENTRY(sys_call_table)

#include "calls.S"

#undef ABI

#undef OBSOLETE

 

另外一个为:

#define ABI(native, compat) compat

#define OBSOLETE(syscall) syscall

 

   .type sys_oabi_call_table, #object

ENTRY(sys_oabi_call_table)

#include "calls.S"

#undef ABI

#undef OBSOLETE

这样看来貌似两个系统调用表是完全一样的。这里预处理指令include的独特用法也挺有意思,系统调用表的内容就是整个arch/arm/kernel/calls.S文件的内容(由于太长,这里就不全部列出了):

/* 0 */     CALL(sys_restart_syscall)

      CALL(sys_exit)

      CALL(sys_fork_wrapper)

      CALL(sys_read)

      CALL(sys_write)

/* 5 */     CALL(sys_open)

      CALL(sys_close)

……

 

上面的CALL()是个宏,它同样在文件arch/arm/kernel/entry-armv.S中定义:

#define CALL(x) .equ NR_syscalls,NR_syscalls+1

#include "calls.S"

#undef CALL

#define CALL(x) .long x

在定义宏CALL()的地方,我们看到calls.S已经被包含了一次,只不过在这里,不是为了建立系统调用表,而仅仅是为了获得系统的系统调用的数量,并保存在宏NR_syscalls中。在SWI向量中,我们也看到,是使用了这个宏的。

 

最后再罗嗦一点,如果用sys_open来搜的话,是搜不到系统调用open的定义的,系统调用函数都是用宏来定义的,比如对于open,有这样的定义:

---------------------------------------------------------------------

fs/open.c

1066 SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, int, mode)

1067 {

1068         long ret;

1069

1070         if (force_o_largefile())

1071                 flags |= O_LARGEFILE;

1072

1073         ret = do_sys_open(AT_FDCWD, filename, flags, mode);

1074         /* avoid REGPARM breakage on x86: */

1075         asmlinkage_protect(3, ret, filename, flags, mode);

1076         return ret;

1077 }

---------------------------------------------------------------------

 

继续回到vector_swi,如果系统调用号不正确,则会调用arm_syscall函数来进行处理,这个函数定义如下:

---------------------------------------------------------------------

arch/arm/kernel/traps.c

465 #define NR(x) ((__ARM_NR_##x) - __ARM_NR_BASE)

466 asmlinkage int arm_syscall(int no, struct pt_regs *regs)

467 {

468   struct thread_info *thread = current_thread_info();

469   siginfo_t info;

470

471   if ((no >> 16) != (__ARM_NR_BASE>> 16))

472        return bad_syscall(no, regs);

473

474   switch (no & 0xffff) {

475   case 0: /* branch through 0 */

476        info.si_signo = SIGSEGV;

477        info.si_errno = 0;

478        info.si_code  = SEGV_MAPERR;

479        info.si_addr  = NULL;

480

481        arm_notify_die("branch through zero", regs, &info, 0, 0);

482        return 0;

483

484   case NR(breakpoint): /* SWI BREAK_POINT */

485        regs->ARM_pc -= thumb_mode(regs) ? 2 : 4;

486        ptrace_break(current, regs);

487        return regs->ARM_r0;

488

489  /*

490   * Flush a region from virtual address 'r0' to virtual address 'r1'

491 * _exclusive_.  There is no alignment requirement on either address;

492   * user space does not need to know the hardware cache layout.

493   *

494   * r2 contains flags.  It should ALWAYS be passed as ZERO until it

495   * is defined to be something else.  For now we ignore it, but may

496   * the fires of hell burn in your belly if you break this rule. ;)

497   *

498   * (at a later date, we may want to allow this call to not flush

499   * various aspects of the cache.  Passing '' will guarantee that

500   * everything necessary gets flushed to maintain consistency in

501   * the specified region).

502   */

503   case NR(cacheflush):

504        do_cache_op(regs->ARM_r0, regs->ARM_r1, regs->ARM_r2);

505        return 0;

506

507   case NR(usr26):

508        if (!(elf_hwcap & HWCAP_26BIT))

509             break;

510        regs->ARM_cpsr &= ~MODE32_BIT;

511        return regs->ARM_r0;

512

513   case NR(usr32):

514        if (!(elf_hwcap & HWCAP_26BIT))

515             break;

516        regs->ARM_cpsr |= MODE32_BIT;

517        return regs->ARM_r0;

518

519   case NR(set_tls):

520        thread->tp_value = regs->ARM_r0;

521 #if defined(CONFIG_HAS_TLS_REG)

522        asm ("mcr p15, 0, %0, c13, c0, 3" : : "r" (regs->ARM_r0) );

523 #elif !defined(CONFIG_TLS_REG_EMUL)

524        /*

525         * User space must never try to access this directly.

526         * Expect your app to break eventually if you do so.

527         * The user helper at 0xffff0fe0 must be used instead.

528         * (see entry-armv.S for details)

529         */

530        *((unsigned int *)0xffff0ff0) = regs->ARM_r0;

531 #endif

532        return 0;

533

534 #ifdef CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG

535  /*

536   * Atomically store r1 in *r2 if *r2 is equal to r0 for user space.

537   * Return zero in r0 if *MEM was changed or non-zero if no exchange

538   * happened.  Also set the user C flag accordingly.

539   * If access permissions have to be fixed up then non-zero is

540   * returned and the operation has to be re-attempted.

541   *

542   * *NOTE*: This is a ghost syscall private to the kernel.  Only the

543   * __kuser_cmpxchg code in entry-armv.S should be aware of its

544   * existence.  Don't ever use this from user code.

545   */

546  case NR(cmpxchg):

547  for (;;) {

548      extern void do_DataAbort(unsigned long addr, unsigned int fsr,

549                             struct pt_regs *regs);

550      unsigned long val;

551      unsigned long addr = regs->ARM_r2;

552      struct mm_struct *mm = current->mm;

553      pgd_t *pgd; pmd_t *pmd; pte_t *pte;

554      spinlock_t *ptl;

555

556      regs->ARM_cpsr &= ~PSR_C_BIT;

557      down_read(&mm->mmap_sem);

558      pgd = pgd_offset(mm, addr);

559      if (!pgd_present(*pgd))

560             goto bad_access;

561      pmd = pmd_offset(pgd, addr);

562      if (!pmd_present(*pmd))

563             goto bad_access;

564      pte = pte_offset_map_lock(mm, pmd, addr, &ptl);

565      if (!pte_present(*pte) || !pte_dirty(*pte)) {

566             pte_unmap_unlock(pte, ptl);

567             goto bad_access;

568      }

569      val = *(unsigned long *)addr;

570      val -= regs->ARM_r0;

571      if (val == 0) {

572             *(unsigned long *)addr = regs->ARM_r1;

573             regs->ARM_cpsr |= PSR_C_BIT;

574      }

575      pte_unmap_unlock(pte, ptl);

576      up_read(&mm->mmap_sem);

577      return val;

578

579      bad_access:

580      up_read(&mm->mmap_sem);

581      /* simulate a write access fault */

582      do_DataAbort(addr, 15 + (1 << 11), regs);

583   }

584 #endif

585

586   default:

587        /* Calls 9f00xx..9f07ff are defined to return -ENOSYS

588           if not implemented, rather than raising SIGILL.  This

589           way the calling program can gracefully determine whether

590           a feature is supported.  */

591        if ((no & 0xffff) <= 0x7ff)

592             return -ENOSYS;

593        break;

594   }

595 #ifdef CONFIG_DEBUG_USER

596   /*

597    * experience shows that these seem to indicate that

598    * something catastrophic has happened

599    */

600   if (user_debug & UDBG_SYSCALL) {

601        printk("[%d] %s: arm syscall %d\n",

602            task_pid_nr(current), current->comm, no);

603        dump_instr("", regs);

604        if (user_mode(regs)) {

605             __show_regs(regs);

606             c_backtrace(regs->ARM_fp, processor_mode(regs));

607        }

608   }

609 #endif

610   info.si_signo = SIGILL;

611   info.si_errno = 0;

612   info.si_code  = ILL_ILLTRP;

613   info.si_addr  = (void __user *)instruction_pointer(regs) -

614             (thumb_mode(regs) ? 2 : 4);

615

616   arm_notify_die("Oops - bad syscall(2)", regs, &info, no, 0);

617   return 0;

618 }

---------------------------------------------------------------------

这个函数处理所有的辨别不出来的系统调用。系统调用号正确也好不正确也好,最终都是通过ret_fast_syscall例程来返回,因为我们看到,在进入系统调用处理函数之前,先加载了符号ret_fast_syscall进lr寄存器。ret_fast_syscall定义如下:

---------------------------------------------------------------------

arch/arm/kernel/entry-common.S

ret_fast_syscall:

 UNWIND(.fnstart   )

 UNWIND(.cantunwind   )

   disable_irq           @ disable interrupts

   ldr   r1, [tsk, #TI_FLAGS]

   tst   r1, #_TIF_WORK_MASK

   bne   fast_work_pending

 

   /* perform architecture specific actions before user return */

   arch_ret_to_user r1, lr

 

   restore_user_regs fast = 1, offset = S_OFF

 UNWIND(.fnend     )

fast_work_pending:

   str   r0, [sp, #S_R0+S_OFF]!      @ returned r0

work_pending:

   tst   r1, #_TIF_NEED_RESCHED

   bne   work_resched

   tst   r1, #_TIF_SIGPENDING|_TIF_NOTIFY_RESUME

   beq   no_work_pending

   mov   r0, sp          @ 'regs'

   mov   r2, why            @ 'syscall'

   bl do_notify_resume

   b  ret_slow_syscall      @ Check work again

 

work_resched:

   bl schedule

/*

 * "slow" syscall return path.  "why" tells us if this was a real syscall.

 */

ENTRY(ret_to_user)

ret_slow_syscall:

   disable_irq           @ disable interrupts

   ldr   r1, [tsk, #TI_FLAGS]

   tst   r1, #_TIF_WORK_MASK

   bne   work_pending

no_work_pending:

   /* perform architecture specific actions before user return */

   arch_ret_to_user r1, lr

 

   restore_user_regs fast = 0, offset = 0

ENDPROC(ret_to_user)

---------------------------------------------------------------------

对于我们的平台来说,上面的arch_ret_to_user为空。restore_user_regs宏用于恢复现场并返回,restore_user_regs宏定义如下:

---------------------------------------------------------------------

arch/arm/kernel/entry-header.S

   .macro restore_user_regs, fast = 0, offset = 0

   ldr   r1, [sp, #\offset + S_PSR]  @ get calling cpsr

   ldr   lr, [sp, #\offset + S_PC]!  @ get pc

   msr   spsr_cxsf, r1         @ save in spsr_svc

#if defined(CONFIG_CPU_32v6K)

   clrex              @ clear the exclusive monitor

#elif defined (CONFIG_CPU_V6)

   strex r1, r2, [sp]       @ clear the exclusive monitor

#endif

   .if   \fast

   ldmdb sp, {r1 - lr}^        @ get calling r1 - lr

   .else

   ldmdb sp, {r0 - lr}^        @ get calling r0 - lr

   .endif

   mov   r0, r0          @ ARMv5T and earlier require a nop

                   @ after ldm {}^

   add   sp, sp, #S_FRAME_SIZE - S_PC

   movs  pc, lr          @ return & move spsr_svc into cpsr

   .endm

---------------------------------------------------------------------

 

添加新的系统调用

第一、打开arch/arm/kernel/calls.S,在最后添加系统调用的函数原型的指针,例如:

CALL(sys_set_senda)

补充说明一点关于NR_syscalls的东西,这个常量表示系统调用的总的个数,在较新版本的内核中,文件arch/arm/kernel/entry-common.S中可以找到:

   .equ NR_syscalls,0

#define CALL(x) .equ NR_syscalls,NR_syscalls+1

#include "calls.S"

#undef CALL

#define CALL(x) .long x

相当的巧妙,不是吗?在系统调用表中每添加一个系统调用,NR_syscalls就自动增加一。在这个地方先求出NR_syscalls,然后重新定义CALL(x)宏,这样也可以不影响文件后面系统调用表的建立。

第二、打开include/asm-arm/unistd.h,添加系统调用号的宏,感觉这步可以省略,因为这个地方定义的系统调用号主要是个C库,比如uClibc、Glibc用的。例如:

    #define __NR_plan_set_senda             (__NR_SYSCALL_BASE+365)

为了向后兼容,系统调用只能增加而不能减少,这里的编号添加时,也必须按顺序来。否则会导致核心运行错误。

第三,实例化该系统调用,即编写新添加系统调用的实现例如:

SYSCALL_DEFINE1(set_senda, int,iset)

{

       if(iset)

          UART_PUT_CR(&at91_port[2],AT91C_US_SENDA);

       else

          UART_PUT_CR(&at91_port[2],AT91C_US_RSTSTA);

       return 0;

}

第四、打开include/linux/syscalls.h添加函数声明

    asmlinkage long sys_set_senda(int iset);

第五、在应用程序中调用该系统调用,可以参考uClibc的实现。

第六、结束。

 

参考文档:

[精华] arm Linux 2.6高版本中的系统调用方式

http://www.unixresources.net/linux/clf/linuxK/archive/00/00/67/92/679297.html

ARM Linux下添加新的系统调用

http://blog.sina.com.cn/s/blog_3e681643010009h9.html

 

你可能感兴趣的:(linux,vector,user,table,Access,alignment)