好文章,还是转一下吧
本文转自http://www.cvchina.info/2014/02/25/14cvprbing/, 感谢cmm.
亮点巨多:
人去识别一个照片,没见过谁用sliding window的方式一个个仔细的判断。因此Objectness 和Saliency机制很相关,我感觉用objectness应该是detection的正确机制。
关于Salientobject detection,如果一个图像只生成一个saliencymap的话,用单张图像搞Saliency map,发展空间已经不是特别大了,我11年投PAMI那篇在MSRA1000上做到了93%左右的FMeasure,之后没看过别的比我CVPR11论文中segmentation结果(F = 90%)更高的正确率。用多张图像,特别是从internet上随机download的图像,从中提取有用的Salient object,并自动剔除单张图像分析产生的错误,应该还有很多事情可做。具体可参考:http://mmcheng.net/gsal/
关于Objectness,CVPR14这个充其量只算开了个头。因为只用了最最弱的feature(梯度:相邻像素颜色相减的绝对值)和学习方法(LinearSVM)来刻画我对这个问题的observation。进一步对初步结果做分析,将1000个proposal降低到几百个,甚至几十个,并同时保持较高的recall,将会有很多工作可做。从1千降到几十,将是一个漫长的过程,估计需要上百篇paper的不懈努力才有可能实现。
要是在未来几年,能将proposal数目降低到个位数,将会深刻影响图像编辑领域,我们也可能可以直接通过语音命令在没有分类器存在的情况下发出控制命令,例如“把这个object给我变大…”。关于语音控制的semantic parsing和图像编辑,有兴趣的话可以参考:http://mmcheng.net/imagespirit/。这个paper接收后也会公布代码。
以上来自cmm的评价
最后说下自己的感触,有的研究真的没必要堆那么多的算法, 有的简单的,不起眼的算法就能解决相当困难的问题,会得到意想不到的效果。总之,每种方法要对症下药,才能事半功倍。做科研就像填空题一样,语言文字简短精炼,比起那些冗余复杂的文字来的效果更好。
最后祝大家科研马到成功,也祝自己越来越好。过段时间我会将cmm这篇文章的vs2010版奉上,方便vs2010的童鞋(cmm的是vs2012).
NEW!!!!!!!!!!!!!
程序(vs2010win8 32bit, 建议将win32改成x64就可以了)下载地址:http://download.csdn.net/detail/xiaojidan2011/7445645