POJ 2253 Frogger

//Time 63ms, Memory 572K
#include<iostream>  
#include<math.h>  
#include<iomanip>  
using namespace std;  
  
class coordinate  
{  
public:  
    double x,y;  
}point[201];  
  
double path[201][201];   //两点间的权值  
  
int main(void)  
{  
    int i,j,k;  
  
    int cases=1;  
    while(cases)  
    {  
        /*Read in*/  
  
        int n;   //numbers of stones;  
        cin>>n;  
        if(!n)break;  
  
        for(i=1;i<=n;i++)  
            cin>>point[i].x>>point[i].y;  
  
        /*Compute the weights of any two points*/  
  
        for(i=1;i<=n-1;i++)  
            for(j=i+1;j<=n;j++)  
            {  
                double x2=point[i].x-point[j].x;  
                double y2=point[i].y-point[j].y;  
                path[i][j]=path[j][i]=sqrt(x2*x2+y2*y2);  //双向性  
            }  
  
        /*Floyd Algorithm*/  
  
        for(k=1;k<=n;k++)    //k点是第3点  
            for(i=1;i<=n-1;i++)    //主要针对由i到j的松弛,最终任意两点间的权值都会被分别松弛为最大跳的最小(但每个两点的最小不一定相同)  
                for(j=i+1;j<=n;j++)  
                    if(path[i][k]<path[i][j] && path[k][j]<path[i][j])    //当边ik,kj的权值都小于ij时,则走i->k->j路线,否则走i->j路线  
                        if(path[i][k]<path[k][j])               //当走i->k->j路线时,选择max{ik,kj},只有选择最大跳才能保证连通  
                            path[i][j]=path[j][i]=path[k][j];  
                        else  
                            path[i][j]=path[j][i]=path[i][k];  
  
        cout<<"Scenario #"<<cases++<<endl;  
        cout<<fixed<<setprecision(3)<<"Frog Distance = "<<path[1][2]<<endl;  
        //fixed用固定的小数点位数来显示浮点数(包括小数位全为0)  
        //setprecision(3)设置小数位数为3  
        cout<<endl;  
    }  
    return 0;  
}  

你可能感兴趣的:(poj,图论,最短路,floyed)