POJ 3159 Candies(SPFA+栈)差分约束

题目链接:http://poj.org/problem?id=3159

题意:给出m给 x 与y的关系,其中y的糖数不能比x的多c个,即y-x <= c  最后求fly[n]最多能比so[1] 多多少糖?

差分约束问题, 就是求1-n的最短路,  队列实现spfa 会超时了,改为栈实现,即可 


有负环时,用栈比队列快


数组开小了,不报RE,报超时 ,我晕


#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <algorithm>
const int N = 210;
const int maxn = 30100;
const int maxm = 200000;
#define FOR(i,a,b) for(int i=a;i<b;i++)
#define init(a) memset(a,0,sizeof(a))
#define MIN INT_MIN
#define MAX INT_MAX
#define LL long long
using namespace std;
int max(int a,int b){if(a>b)return a; else return b;}
int min(int a,int b){if(a<b)return a; else return b;}
const int INF=0x3f3f3f3f;
struct node
{
    int v,w;
    int next;
}edge[maxm];
int head[maxn];
bool vis[maxn];
int dis[maxn];
int cnt;
void add(int a,int b,int w)//加边
{
    edge[cnt].v=b;
    edge[cnt].w=w;
    edge[cnt].next=head[a];
    head[a]=cnt++;
}
void SPFA(int s,int n)
{
    //stack<int>stk;
    int stk[100000];
    int top = 0;
  
    //stk.push(s);
    stk[top++] = s;
    FOR(i,1,n+1)
    {dis[i] = INF;
    vis[i] = 0;
    }
    dis[s] = 0;
    vis[s] = 1;
    while(top!=0)
    {
        int u=stk[--top];
        //stk.pop();
        vis[u]=false;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(dis[v]>dis[u]+edge[i].w)
            {
                dis[v]=dis[u]+edge[i].w;
                if(!vis[v])
                {
                    vis[v]=true;
                    stk[top++] = v;
                }
            }
        }

    }
}
void initt()
{
    cnt=0;
    memset(head,-1,sizeof(head));
}
int main()
{
    int n,m;
    int a,b,c;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        initt();
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            add(a,b,c);
        }
        SPFA(1,n);
        printf("%d\n",dis[n]);
    }
    return 0;
}



你可能感兴趣的:(POJ 3159 Candies(SPFA+栈)差分约束)