Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 1358 | Accepted: 795 |
Description
There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.
Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.
Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.
Figure 1: An example of setting and its solution
Input
The input consists of multiple datasets, each in the following format.
n m row1 … rown
n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.
0:
Empty
1:
Occupied by an obstacle
2:
Marked with “2”
3:
Marked with “3”
The end of the input is indicated with a line containing two zeros separated by a space.
Output
Sample Input
5 5 0 0 0 0 0 0 0 0 3 0 2 0 2 0 0 1 0 1 1 1 0 0 0 0 3 2 3 2 2 0 0 3 3 6 5 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 2 3 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 9 9 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 3 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 0 3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 0 0
Sample Output
18 2 17 12 0 52 43
解题报告:思考了挺久,第一次敲是这么做的。使用8进制。0表示无插头,1表示线路的左插头,2表示线路的有插头。3表示地图上标记为2的点形成的插头,4表示地图上标记为3的点形成的插头。写了大段的状态转移,最后战战兢兢的提交了,4K代码竟然1A了= =。第一次提交代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=100013; int now,pre; int maze[10][10]; struct Node { int H[maxn]; int N[maxn]; int S[maxn]; int size; void init() { size=0; memset(H,-1,sizeof(H)); } void push(int SS,int num) { int s=SS%maxn; while( ~H[s] && S[H[s]]!=SS ) s=(s+1)%maxn; if( ~H[s] ) { N[H[s]]=min(N[H[s]],num); return ; } N[size]=num; S[size]=SS; H[s]=size++; } int get(int SS) { int s=SS%maxn; while( ~H[s] && S[H[s]]!=SS ) s=(s+1)%maxn; if( ~H[s] ) return N[H[s]]; return 2; } } dp[2]; int get(int S,int p,int l=3) { return (S>>(p*l))&((1<<l)-1); } void set(int &S,int p,int v,int l=3) { S^=get(S,p,l)<<(p*l); S^=v<<(p*l); } int main() { int n,m; while( scanf("%d%d",&n,&m),n||m ) { for(int i=0;i<=n;i++) for(int j=0;j<=m;j++) maze[i][j]=1; for(int i=0;i<n;i++) for(int j=0;j<m;j++) scanf("%d",&maze[i][j]); now=0; pre=1; dp[now].init(); dp[now].push(0,0); for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { swap(now,pre); dp[now].init(); for(int s=0;s<dp[pre].size;s++) { int S=dp[pre].S[s]; int num=dp[pre].N[s]; int p=get(S,j); int q=get(S,j+1); if(maze[i][j]==1) { if(p==0 && q==0) { dp[now].push(S,num); } continue; } if(maze[i][j]>=2) { int no=maze[i][j]+1; if((p==no && q==0)||(q==no && p==0)) { set(S,j,0); set(S,j+1,0); dp[now].push(S,num+1); } else if(p==0 && q==0) { if(maze[i+1][j]!=1) { set(S,j,no); dp[now].push(S,num+1); } if(maze[i][j+1]!=1) { set(S,j,0); set(S,j+1,no); dp[now].push(S,num+1); } } else if((p==0)^(q==0)) { if(max(p,q)==1) { int find=1; for(int k=j+2;k<=m;k++) { int v=get(S,k); if(v==2) find--; else if(v==1) find++; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,no); dp[now].push(S,num+1); break; } } } else if(max(p,q)==2) { int find=1; for(int k=j-1;k>=0;k--) { int v=get(S,k); if(v==2) find++; else if(v==1) find--; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,no); dp[now].push(S,num+1); break; } } } } continue; } if(p==0 && q==0) { dp[now].push(S,num); if(maze[i][j+1]!=1 && maze[i+1][j]!=1) { set(S,j,1); set(S,j+1,2); dp[now].push(S,num+1); } } else if((p>0)^(q>0)) { if(maze[i+(p>0)][j+(q>0)]!=1) dp[now].push(S,num+1); set(S,j,q); set(S,j+1,p); if(maze[i+(q>0)][j+(p>0)]!=1) dp[now].push(S,num+1); } else if((p>=3 && p==q)||(p==2 && q==1)) { set(S,j,0); set(S,j+1,0); dp[now].push(S,num+1); } else if(p==1 && q==1) { int find=1; for(int k=j+2;k<=m;k++) { int v=get(S,k); if(v==1) find++; else if(v==2) find--; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,1); dp[now].push(S,num+1); break; } } } else if(p==2 && q==2) { int find=1; for(int k=j-1;k>=0;k--) { int v=get(S,k); if(v==2) find++; else if(v==1) find--; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,2); dp[now].push(S,num+1); break; } } } else if(max(p,q)>=3 && min(p,q)==1) { int find=1; for(int k=j+2;k<=m;k++) { int v=get(S,k); if(v==2) find--; else if(v==1) find++; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,max(p,q)); dp[now].push(S,num+1); break; } } } else if(max(p,q)>=3 && min(p,q)==2) { int find=1; for(int k=j-1;k>=0;k--) { int v=get(S,k); if(v==1) find--; else if(v==2) find++; if(find==0) { set(S,j,0); set(S,j+1,0); set(S,k,max(p,q)); dp[now].push(S,num+1); break; } } } else { } } } for(int s=0;s<dp[now].size;s++) dp[now].S[s]<<=3; } printf("%d\n",dp[now].get(0)-2); } }后来优化了下,将maxn该成29989,直接204MS搞定,排名第7哈哈。没有往下试了,有兴趣的可以继续。
看了下kuangbin大神的思路,直接用2表示2号插头,3表示3号插头。之前不敢这么做是因为担心产生回路,现在想一下,整个过程都在贪心,肯定不会有回路嘛。改了下代码,如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=59999; int now,pre; int maze[10][10]; struct Node { int H[maxn]; int N[maxn]; int S[maxn]; int size; void init() { size=0; memset(H,-1,sizeof(H)); } void push(int SS,int num) { int s=SS%maxn; while( ~H[s] && S[H[s]]!=SS ) s=(s+1)%maxn; if( ~H[s] ) { N[H[s]]=min(N[H[s]],num); return ; } N[size]=num; S[size]=SS; H[s]=size++; } int get(int SS) { int s=SS%maxn; while( ~H[s] && S[H[s]]!=SS ) s=(s+1)%maxn; if( ~H[s] ) return N[H[s]]; return 2; } } dp[2]; int L=2; int get(int S,int p) { return (S>>(p*L))&((1<<L)-1); } void set(int &S,int p,int v) { S^=get(S,p)<<(p*L); S^=v<<(p*L); } int main() { int n,m; while( scanf("%d%d",&n,&m),n||m ) { memset(maze,0,sizeof(maze)); for(int i=0;i<n;i++) for(int j=0;j<m;j++) { scanf("%d",&maze[i][j]); if(maze[i][j]<=1) maze[i][j]^=1; } now=0; pre=1; dp[now].init(); dp[now].push(0,0); for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { swap(now,pre); dp[now].init(); for(int s=0;s<dp[pre].size;s++) { int S=dp[pre].S[s]; int num=dp[pre].N[s]; int p=get(S,j); int q=get(S,j+1); if(maze[i][j]==0) { if(p==0 && q==0) dp[now].push(S,num); continue; } if(maze[i][j]>=2) { if((p>0)^(q>0)) { if(max(p,q)==maze[i][j]) { set(S,j,0); set(S,j+1,0); dp[now].push(S,num+1); } } if(p==0 && q==0) { if(maze[i+1][j]) { set(S,j,maze[i][j]); set(S,j+1,0); dp[now].push(S,num+1); } if(maze[i][j+1]) { set(S,j,0); set(S,j+1,maze[i][j]); dp[now].push(S,num+1); } } continue; } if(p==0 && q==0) { dp[now].push(S,num); if(maze[i+1][j] && maze[i][j+1]) { set(S,j,2); set(S,j+1,2); dp[now].push(S,num+1); set(S,j,3); set(S,j+1,3); dp[now].push(S,num+1); } } else if((p>0) ^ (q>0)) { if(maze[i+(p>0)][j+(q>0)]) dp[now].push(S,num+1); set(S,j,q); set(S,j+1,p); if(maze[i+(q>0)][j+(p>0)]) dp[now].push(S,num+1); } else if(p==q) { set(S,j,0); set(S,j+1,0); dp[now].push(S,num+1); } } } for(int s=0;s<dp[now].size;s++) dp[now].S[s]<<=L; } printf("%d\n",dp[now].get(0)-2); } }
这段代码时间挺长,也没有再优化了。
越是长的代码越是担心。如果真的比赛,应该会选择第二种吧,思路代码都清晰。
最小表示法:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int maxn=59999; const int L=2; int now,pre; int n,m; int endx,endy; int maze[15][15]; int code[15]; struct Node { int h[maxn]; int n[maxn]; LL s[maxn]; int size; void init() { memset(h,-1,sizeof(h)); size=0; } void push(LL ss,int num) { int i=ss%maxn; while( ~h[i] && s[h[i]]!=ss ) i=(i+1)%maxn; if( ~h[i] ) { n[h[i]]=min(n[h[i]],num); } else { s[size]=ss; n[size]=num; h[i]=size++; } } int get(LL ss) { int i=ss%maxn; while( ~h[i] && s[h[i]]!=ss ) i=(i+1)%maxn; if( ~h[i] ) return n[h[i]]-2; else return 0; } } dp[2]; void decode(LL s) { for(int i=0;i<=m;i++) code[i]=s&((1<<L)-1),s>>=L; } LL encode() { LL s=0; for(int i=m;i>=0;i--) { s<<=L; s|=code[i]; } return s; } void shift() { for(int s=0;s<dp[now].size;s++) dp[now].s[s]<<=L; } void merge(int a,int b) { for(int i=0;i<=m;i++) if(code[i]==a) code[i]=b; } void doGrid(int i,int j) { for(int s=0;s<dp[pre].size;s++) { decode(dp[pre].s[s]); int num=dp[pre].n[s]; int left=code[j]; int up=code[j+1]; int ma=max(left,up); int mi=min(left,up); int val=maze[i][j]; if(val==0) { if(ma==0) dp[now].push(encode(),num); continue; } else if(val>1) { if(ma==val && mi==0) { code[j]=0; code[j+1]=0; dp[now].push(encode(),num+1); continue; } else if(ma==0) { if(maze[i+1][j]==1 || maze[i+1][j]==val) { code[j]=val; code[j+1]=0; dp[now].push(encode(),num+1); } if(maze[i][j+1]==1 || maze[i][j+1]==val) { code[j]=0; code[j+1]=val; dp[now].push(encode(),num+1); } } continue; } if(ma==0) { dp[now].push(encode(),num); if(maze[i][j+1] && maze[i+1][j]) { code[j]=code[j+1]=2; dp[now].push(encode(),num+1); code[j]=code[j+1]=3; dp[now].push(encode(),num+1); } } else if(mi==0) { if(maze[i+1][j]==1 || maze[i+1][j]==ma) { code[j]=ma; code[j+1]=0; dp[now].push(encode(),num+1); } if(maze[i][j+1]==1 || maze[i][j+1]==ma) { code[j]=0; code[j+1]=ma; dp[now].push(encode(),num+1); } } else if(left==up) { code[j]=code[j+1]=0; dp[now].push(encode(),num+1); } } } void solve() { now=1,pre=0; dp[now].init(); dp[now].push(0,0); for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { swap(now,pre); dp[now].init(); doGrid(i,j); } shift(); } } void init() { memset(maze,0,sizeof(maze)); for(int i=0;i<n;i++) for(int j=0;j<m;j++) { scanf("%d",&maze[i][j]); if(maze[i][j]<=1) maze[i][j]^=1; } } int main() { int cas=1; while(scanf("%d%d",&n,&m),n||m) { init(); solve(); printf("%d\n",dp[now].get(0)); } }