点到圆弧的距离(csu1503)

1503: 点到圆弧的距离

Time Limit: 1 Sec   Memory Limit: 128 MB   Special Judge
Submit: 325   Solved: 70
[ Submit][ Status][ Web Board]

Description

输入一个点P和一条圆弧(圆周的一部分),你的任务是计算P到圆弧的最短距离。换句话说,你需要在圆弧上找一个点,到P点的距离最小。
提示:请尽量使用精确算法。相比之下,近似算法更难通过本题的数据。

Input

输入包含最多10000组数据。每组数据包含8个整数x1, y1, x2, y2, x3, y3, xp, yp。圆弧的起点是A(x1,y1),经过点B(x2,y2),结束位置是C(x3,y3)。点P的位置是 (xp,yp)。输入保证A, B, C各不相同且不会共线。上述所有点的坐标绝对值不超过20。

Output

对于每组数据,输出测试点编号和P到圆弧的距离,保留三位小数。你的输出和标准输出之间最多能有0.001的误差。

Sample Input

0 0 1 1 2 0 1 -1
3 4 0 5 -3 4 0 1

Sample Output

Case 1: 1.414
Case 2: 4.000

HINT

Source

湖南省第十届大学生计算机程序设计竞赛

 
思路:根据三点确定圆心和半径;关键是确定扇形区域(尤其是优弧)
 
 
 
 
确定点在扇形区域就分两种情况,在圆内和圆外;不在扇形区域就是min(到A,到C)距离最短的;
 
 
转载请注明出处: 寻找&星空の孩子 
 
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503#userconsent#
 
具体见代码:
 
#include<stdio.h>
#include<math.h>
#define PI acos(-1.0)
#include<algorithm>
using namespace std;
struct Point
{
    double x;
    double y;
    Point(double x=0,double y=0):x(x),y(y) {} //构造函数,方便代码编写
} pt;
struct Traingle
{
    struct Point p[3];
} Tr;
struct Circle
{
    struct Point center;
    double r;
} ans;
//计算两点距离
double Dis(struct Point p, struct Point q)
{
    double dx=p.x-q.x;
    double dy=p.y-q.y;
    return sqrt(dx*dx+dy*dy);
}
//计算三角形面积
double Area(struct Traingle ct)
{
    return fabs((ct.p[1].x-ct.p[0].x)*(ct.p[2].y-ct.p[0].y)-(ct.p[2].x-ct.p[0].x)*(ct.p[1].y-ct.p[0].y))/2.0;
}
//求三角形的外接圆,返回圆心和半径(存在结构体"圆"中)
struct Circle CircumCircle(struct Traingle t)
{
    struct Circle tmp;
    double a, b, c, c1, c2;
    double xA, yA, xB, yB, xC, yC;
    a = Dis(t.p[0], t.p[1]);
    b = Dis(t.p[1], t.p[2]);
    c = Dis(t.p[2], t.p[0]);
//根据 S = a * b * c / R / 4;求半径 R
    tmp.r = (a*b*c)/(Area(t)*4.0);
    xA = t.p[0].x;
    yA = t.p[0].y;
    xB = t.p[1].x;
    yB = t.p[1].y;
    xC = t.p[2].x;
    yC = t.p[2].y;
    c1 = (xA*xA+yA*yA - xB*xB-yB*yB) / 2;
    c2 = (xA*xA+yA*yA - xC*xC-yC*yC) / 2;
    tmp.center.x = (c1*(yA - yC)-c2*(yA - yB)) / ((xA - xB)*(yA - yC)-(xA - xC)*(yA - yB));
    tmp.center.y = (c1*(xA - xC)-c2*(xA - xB)) / ((yA - yB)*(xA - xC)-(yA - yC)*(xA - xB));
    return tmp;
}

typedef Point Vector;


Vector operator + (Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}


Vector operator - (Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}


Vector operator * (Vector A,double p)
{
    return Vector(A.x*p,A.y*p);
}


Vector operator / (Vector A,double p)
{
    return Vector(A.x/p,A.y/p);
}


bool operator < (const Point& a,const Point& b)
{
    return a.x<b.x||(a.x==b.x && a.y<b.y);
}


const double eps = 1e-10;

int dcmp(double x)
{
    if(fabs(x)<eps)return 0;
    else return x < 0 ? -1 : 1;
}
bool operator == (const Point& a,const Point& b)
{
    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
}

double Dot(Vector A,Vector B)
{
    return A.x*B.x+A.y*B.y;
}
double length(Vector A)
{
    return sqrt(Dot(A,A));
}
double Angle(Vector A,Vector B)
{
    return acos(Dot(A,B)/length(A)/length(B));
}


double Cross(Vector A,Vector B)
{
    return A.x*B.y-B.x*A.y;
}
double Area2(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}
double len;

int main()
{
    int ca=1;
    while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&Tr.p[0].x,&Tr.p[0].y,&Tr.p[1].x,&Tr.p[1].y,&Tr.p[2].x,&Tr.p[2].y,&pt.x,&pt.y)!=EOF)
    {
        //      printf("%lf %lf\n%lf %lf\n%lf %lf\n%lf %lf\n",Tr.p[0].x,Tr.p[0].y,Tr.p[1].x,Tr.p[1].y,Tr.p[2].x,Tr.p[2].y,pt.x,pt.y);
        Circle CC=CircumCircle(Tr);
        //      printf("%lf %lf,r=%lf",CC.center.x,CC.center.y,CC.r);
        Point A(Tr.p[0].x,Tr.p[0].y),O(CC.center.x,CC.center.y),C(Tr.p[2].x,Tr.p[2].y),D(pt.x,pt.y),B(Tr.p[1].x,Tr.p[1].y);

        Vector OA(A-O),OB(B-O),OC(C-O),OD(D-O);
        if(Cross(OA,OB)<=0&&Cross(OB,OC)<=0||Cross(OA,OB)>=0&&Cross(OB,OC)<0&&Cross(OA,OC)>0||Cross(OA,OB)<0&&Cross(OB,OC)>=0&&Cross(OA,OC)>0)//顺
        {
            if(Cross(OA,OD)<=0&&Cross(OD,OC)<=0||Cross(OA,OD)>=0&&Cross(OD,OC)<0&&Cross(OA,OC)>0||Cross(OA,OD)<0&&Cross(OD,OC)>=0&&Cross(OA,OC)>0)
            {
                len=fabs(length(D-O));
                if(len<=CC.r) len=CC.r-len;
                else len=len-CC.r;
            }
            else
            {
                len=min(fabs(length(A-D)),fabs(length(C-D)));
            }
        }
        else if(Cross(OA,OB)>=0&&Cross(OB,OC)>=0||Cross(OA,OB)>0&&Cross(OB,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OB)<=0&&Cross(OB,OC)>0&&Cross(OA,OC)<0)//逆
        {
            if(Cross(OA,OD)>=0&&Cross(OD,OC)>=0||Cross(OA,OD)>0&&Cross(OD,OC)<=0&&Cross(OA,OC)<0||Cross(OA,OD)<=0&&Cross(OD,OC)>0&&Cross(OA,OC)<0)
            {
                len=fabs(length(D-O));
                if(len<=CC.r) len=CC.r-len;
                else len=len-CC.r;
            }
            else
            {
                len=min(fabs(length(A-D)),fabs(length(C-D)));
            }
        }

        printf("Case %d: %0.3f\n",ca++,len);
    }
    return 0;
}
/*
0 0 1 1 2 0 1 -1
3 4 0 5 -3 4 0 1
0 0 1 1 1 -1 0 -1
*/
思路很简单,就是分情况讨论的时候,要仔细点。

你可能感兴趣的:(数论,几何,点到圆弧的距离,csu1503)