Linux 2.6内核的一个重要特色是提供了统一的内核设备模型。随着技术的不断进步,系统的拓扑结构越来越复杂,对智能电源管理、热插拔以及plug and play的支持要求也越来越高,2.4内核已经难以满足这些需求。为适应这种形势的需要,2.6内核开发了全新的设备模型。
1. Sysfs文件系统
Sysfs文件系统是一个类似于proc文件系统的特殊文件系统,用于将系统中的设备组织成层次结构,并向用户模式程序提供详细的内核数据结构信息。其顶层目录主要有:
Block目录:包含所有的块设备
Devices目录:包含系统所有的设备,并根据设备挂接的总线类型组织成层次结构
Bus目录:包含系统中所有的总线类型
Drivers目录:包括内核中所有已注册的设备驱动程序
Class目录:系统中的设备类型(如网卡设备,声卡设备等)
2. 内核对象机制关键数据结构
2.1 kobject内核对象
Kobject 是Linux 2.6引入的新的设备管理机制,在内核中由struct kobject表示。通过这个数据结构使所有设备在底层都具有统一的接口,kobject提供基本的对象管理,是构成Linux 2.6设备模型的核心结构,它与sysfs文件系统紧密关联,每个在内核中注册的kobject对象都对应于sysfs文件系统中的一个目录。
Kobject结构定义为:
struct kobject {
char * k_name; 指向设备名称的指针
char name[KOBJ_NAME_LEN]; 设备名称
struct kref kref; 对象引用计数
struct list_head entry; 挂接到所在kset中去的单元
struct kobject * parent; 指向父对象的指针
struct kset * kset; 所属kset的指针
struct kobj_type * ktype; 指向其对象类型描述符的指针
struct dentry * dentry; sysfs文件系统中与该对象对应的文件节点路径指针
};
其中的kref域表示该对象引用的计数,内核通过kref实现对象引用计数管理,内核提供两个函数kobject_get()、kobject_put()分别用于增加和减少引用计数,当引用计数为0时,所有该对象使用的资源将被释放。
Ktype 域是一个指向kobj_type结构的指针,表示该对象的类型。Kobj_type数据结构包含三个域:一个release方法用于释放kobject占 用的资源;一个sysfs_ops指针指向sysfs操作表和一个sysfs文件系统缺省属性列表。Sysfs操作表包括两个函数store()和 show()。当用户态读取属性时,show()函数被调用,该函数编码指定属性值存入buffer中返回给用户态;而store()函数用于存储用户态 传入的属性值。
2.2 kset内核对象集合
Kobject通常通过kset组织成层次化的结构,kset是具有相同类型的kobject的集合,在内核中用kset数据结构表示,定义为:
struct kset {
struct subsystem * subsys; 所在的subsystem的指针
struct kobj_type * ktype; 指向该kset对象类型描述符的指针
struct list_head list; 用于连接该kset中所有kobject的链表头
struct kobject kobj; 嵌入的kobject
struct kset_hotplug_ops * hotplug_ops; 指向热插拔操作表的指针
};
包 含在kset中的所有kobject被组织成一个双向循环链表,list域正是该链表的头。Ktype域指向一个kobj_type结构,被该 kset中的所有kobject共享,表示这些对象的类型。Kset数据结构还内嵌了一个kobject对象(由kobj域表示),所有属于这个kset 的kobject对象的parent域均指向这个内嵌的对象。此外,kset还依赖于kobj维护引用计数:kset的引用计数实际上就是内嵌的 kobject对象的引用计数。
2.3 subsystem内核对象子系统
Subsystem是一系列kset的集合,描述系统中某一 类设备子系统,如block_subsys表示所有的块设备,对应于sysfs文件系统中的block目录。类似的,devices_subsys对应于 sysfs中的devices目录,描述系统中所有的设备。Subsystem由struct subsystem数据结构描述,定义为:
struct subsystem {
struct kset kset; 内嵌的kset对象
struct rw_semaphore rwsem; 互斥访问信号量
};
每 个kset必须属于某个subsystem,通过设置kset结构中的subsys域指向指定的subsystem可以将一个kset加入到该 subsystem。所有挂接到同一subsystem的kset共享同一个rwsem信号量,用于同步访问kset中的链表。
3. 内核对象机制主要相关函数
针对内核对象不同层次的数据结构,linux 2.6内核定义了一系列操作函数,定义于lib/kobject.c文件中。
3.1 kobject相关函数
void kobject_init(struct kobject * kobj);
kobject初始化函数。设置kobject引用计数为1,entry域指向自身,其所属kset引用计数加1。
int kobject_set_name(struct kobject *kobj, const char *format, ...);
设置指定kobject的名称。
void kobject_cleanup(struct kobject * kobj)和void kobject_release(struct kref *kref);
kobject清除函数。当其引用计数为0时,释放对象占用的资源。
struct kobject *kobject_get(struct kobject *kobj);
将kobj 对象的引用计数加1,同时返回该对象的指针。
void kobject_put(struct kobject * kobj);
将kobj对象的引用计数减1,如果引用计数降为0,则调用kobject_release()释放该kobject对象。
int kobject_add(struct kobject * kobj);
将kobj对象加入Linux设备层次。挂接该kobject对象到kset的list链中,增加父目录各级kobject的引用计数,在其parent指向的目录下创建文件节点,并启动该类型内核对象的hotplug函数。
int kobject_register(struct kobject * kobj);
kobject注册函数。通过调用kobject_init()初始化kobj,再调用kobject_add()完成该内核对象的注册。
void kobject_del(struct kobject * kobj);
从Linux设备层次(hierarchy)中删除kobj对象。
void kobject_unregister(struct kobject * kobj);
kobject注销函数。与kobject_register()相反,它首先调用kobject_del从设备层次中删除该对象,再调用kobject_put()减少该对象的引用计数,如果引用计数降为0,则释放该kobject对象。
3.2 kset相关函数
与kobject 相似,kset_init()完成指定kset的初始化,kset_get()和kset_put()分别增加和减少kset对象的引用计数。 Kset_add()和kset_del()函数分别实现将指定keset对象加入设备层次和从其中删除;kset_register()函数完成 kset的注册而kset_unregister()函数则完成kset的注销。
3.3 subsystem相关函数
subsystem有一组完成类似的函数,分别是:
void subsystem_init(struct subsystem *subsys);
int subsystem_register(struct subsystem *subsys);
void subsystem_unregister(struct subsystem *subsys);
struct subsystem *subsys_get(struct subsystem *subsys)
void subsys_put(struct subsystem *subsys);
4. 设备模型组件
在上述内核对象机制的基础上,Linux的设备模型建立在几个关键组件的基础上,下面我们详细阐述这些组件。
4.1 devices
系统中的任一设备在设备模型中都由一个device对象描述,其对应的数据结构struct device定义为:
struct device {
struct list_head g_list;
struct list_head node;
struct list_head bus_list;
struct list_head driver_list;
struct list_head children;
struct device *parent;
struct kobject kobj;
char bus_id[BUS_ID_SIZE];
struct bus_type *bus;
struct device_driver *driver;
void *driver_data;
/* Several fields omitted */
};
g_list 将该device对象挂接到全局设备链表中,所有的device对象都包含在devices_subsys中,并组织成层次结构。Node域将该对象挂接 到其兄弟对象的链表中,而bus_list则用于将连接到相同总线上的设备组织成链表,driver_list则将同一驱动程序管理的所有设备组织为链 表。此外,children域指向该device对象子对象链表头,parent域则指向父对象。Device对象还内嵌一个kobject对象,用于引 用计数管理并通过它实现设备层次结构。Driver域指向管理该设备的驱动程序对象,而driver_data则是提供给驱动程序的数据。Bus域描述设 备所连接的总线类型。
内核提供了相应的函数用于操作device对象。其中Device_register()函数将一个新的device对象插 入设备模型,并自动在/sys/devices下创建一个对应的目录。Device_unregister()完成相反的操作,注销设备对象。 Get_device()和put_device()分别增加与减少设备对象的引用计数。通常device结构不单独使用,而是包含在更大的结构中作为一 个子结构使用,比如描述PCI设备的struct pci_dev,其中的dev域就是一个device对象。
4.2 drivers
系统中的每个驱动程序由一个device_driver对象描述,对应的数据结构定义为:
struct device_driver {
char *name; 设备驱动程序的名称
struct bus_type *bus; 该驱动所管理的设备挂接的总线类型
struct kobject kobj; 内嵌kobject对象
struct list_head devices; 该驱动所管理的设备链表头
int (*probe)(struct device *dev); 指向设备探测函数,用于探测设备是否可以被该驱动程序管理
int (*remove)(struct device *dev); 用于删除设备的函数
/* some fields omitted*/
};
与device 结构类似,device_driver对象依靠内嵌的kobject对象实现引用计数管理和层次结构组织。内核提供类似的函数用于操作 device_driver对象,如get_driver()增加引用计数,driver_register()用于向设备模型插入新的driver对 象,同时在sysfs文件系统中创建对应的目录。Device_driver()结构还包括几个函数,用于处理热拔插、即插即用和电源管理事件。
4.3 buses
系统中总线由struct bus_type描述,定义为:
struct bus_type {
char * name; 总线类型的名称
struct subsystem subsys; 与该总线相关的subsystem
struct kset drivers; 所有与该总线相关的驱动程序集合
struct kset devices; 所有挂接在该总线上的设备集合
struct bus_attribute * bus_attrs; 总线属性
struct device_attribute * dev_attrs; 设备属性
struct driver_attribute * drv_attrs; 驱动程序属性
int (*match)(struct device * dev, struct device_driver * drv);
int (*hotplug) (struct device *dev, char **envp, int num_envp, char *buffer, int buffer_size);
int (*suspend)(struct device * dev, u32 state);
int (*resume)(struct device * dev);
};
每 个bus_type对象都内嵌一个subsystem对象,bus_subsys对象管理系统中所有总线类型的subsystem对象。每个 bus_type对象都对应/sys/bus目录下的一个子目录,如PCI总线类型对应于/sys/bus/pci。在每个这样的目录下都存在两个子目 录:devices和drivers(分别对应于bus_type结构中的devices和drivers域)。其中devices子目录描述连接在该总 线上的所有设备,而drivers目录则描述与该总线关联的所有驱动程序。与device_driver对象类似,bus_type结构还包含几个函数 (match()、hotplug()等)处理相应的热插拔、即插即拔和电源管理事件。
4.4 classes
系统中的设备类由 struct class描述,表示某一类设备。所有的class对象都属于class_subsys子系统,对应于sysfs文件系统中的/sys/class目录。 每个class对象包括一个class_device链表,每个class_device对象表示一个逻辑设备,并通过struct class_device中的dev域(一个指向struct device的指针)关联一个物理设备。这样,一个逻辑设备总是对应于一个物理设备,但是一个物理设备却可能对应于多个逻辑设备。此外,class结构中 还包括用于处理热插拔、即插即拔和电源管理事件的函数,这与device对象和driver对象相似。
#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET) extern inline unsigned long virt_to_phys(volatile void * address) { return __pa(address); } |
#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET)) extern inline void * phys_to_virt(unsigned long address) { return __va(address); } |
#include <linux/module.h> #include <linux/slab.h> #include <linux/vmalloc.h> MODULE_LICENSE("GPL"); unsigned char *pagemem; unsigned char *kmallocmem; unsigned char *vmallocmem; int __init mem_module_init(void) { //最好每次内存申请都检查申请是否成功 //下面这段仅仅作为演示的代码没有检查 pagemem = (unsigned char*)get_free_page(0); printk("<1>pagemem addr=%x", pagemem); kmallocmem = (unsigned char*)kmalloc(100, 0); printk("<1>kmallocmem addr=%x", kmallocmem); vmallocmem = (unsigned char*)vmalloc(1000000); printk("<1>vmallocmem addr=%x", vmallocmem); return 0; } void __exit mem_module_exit(void) { free_page(pagemem); kfree(kmallocmem); vfree(vmallocmem); } module_init(mem_module_init); module_exit(mem_module_exit); |
void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags); |
void iounmap(void * addr); |
#define readb(addr) (*(volatile unsigned char *) __io_virt(addr)) #define readw(addr) (*(volatile unsigned short *) __io_virt(addr)) #define readl(addr) (*(volatile unsigned int *) __io_virt(addr)) #define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b)) #define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b)) #define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b)) #define memset_io(a,b,c) memset(__io_virt(a),(b),(c)) #define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c)) #define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c)) |
static void get_rtc_time(int alm, struct rtc_time *rtc_tm) { spin_lock_irq(&rtc_lock); if (alm == 1) { rtc_tm->tm_year = (unsigned char)ALMYEAR & Msk_RTCYEAR; rtc_tm->tm_mon = (unsigned char)ALMMON & Msk_RTCMON; rtc_tm->tm_mday = (unsigned char)ALMDAY & Msk_RTCDAY; rtc_tm->tm_hour = (unsigned char)ALMHOUR & Msk_RTCHOUR; rtc_tm->tm_min = (unsigned char)ALMMIN & Msk_RTCMIN; rtc_tm->tm_sec = (unsigned char)ALMSEC & Msk_RTCSEC; } else { read_rtc_bcd_time: rtc_tm->tm_year = (unsigned char)BCDYEAR & Msk_RTCYEAR; rtc_tm->tm_mon = (unsigned char)BCDMON & Msk_RTCMON; rtc_tm->tm_mday = (unsigned char)BCDDAY & Msk_RTCDAY; rtc_tm->tm_hour = (unsigned char)BCDHOUR & Msk_RTCHOUR; rtc_tm->tm_min = (unsigned char)BCDMIN & Msk_RTCMIN; rtc_tm->tm_sec = (unsigned char)BCDSEC & Msk_RTCSEC; if (rtc_tm->tm_sec == 0) { /* Re-read all BCD registers in case of BCDSEC is 0. See RTC section at the manual for more info. */ goto read_rtc_bcd_time; } } spin_unlock_irq(&rtc_lock); BCD_TO_BIN(rtc_tm->tm_year); BCD_TO_BIN(rtc_tm->tm_mon); BCD_TO_BIN(rtc_tm->tm_mday); BCD_TO_BIN(rtc_tm->tm_hour); BCD_TO_BIN(rtc_tm->tm_min); BCD_TO_BIN(rtc_tm->tm_sec); /* The epoch of tm_year is 1900 */ rtc_tm->tm_year += RTC_LEAP_YEAR - 1900; /* tm_mon starts at 0, but rtc month starts at 1 */ rtc_tm->tm_mon--; } |
#define ALMDAY bRTC(0x60) #define ALMMON bRTC(0x64) #define ALMYEAR bRTC(0x68) |
#define bRTC(Nb) __REG(0x57000000 + (Nb)) |
# define __REG(x) io_p2v(x) |
#define io_p2v(x) ((x) | 0xa0000000) |
# define __PREG(x) io_v2p(x) |
#define io_v2p(x) ((x) & ~0xa0000000) |
/************mmap_ioremap.c**************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/wrapper.h> /* for mem_map_(un)reserve */ #include <asm/io.h> /* for virt_to_phys */ #include <linux/slab.h> /* for kmalloc and kfree */ MODULE_PARM(mem_start, "i"); MODULE_PARM(mem_size, "i"); static int mem_start = 101, mem_size = 10; static char *reserve_virt_addr; static int major; int mmapdrv_open(struct inode *inode, struct file *file); int mmapdrv_release(struct inode *inode, struct file *file); int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma); static struct file_operations mmapdrv_fops = { owner: THIS_MODULE, mmap: mmapdrv_mmap, open: mmapdrv_open, release: mmapdrv_release, }; int init_module(void) { if ((major = register_chrdev(0, "mmapdrv", &mmapdrv_fops)) < 0) { printk("mmapdrv: unable to register character device/n"); return ( - EIO); } printk("mmap device major = %d/n", major); printk("high memory physical address 0x%ldM/n", virt_to_phys(high_memory) / 1024 / 1024); reserve_virt_addr = ioremap(mem_start *1024 * 1024, mem_size *1024 * 1024); printk("reserve_virt_addr = 0x%lx/n", (unsigned long)reserve_virt_addr); if (reserve_virt_addr) { int i; for (i = 0; i < mem_size *1024 * 1024; i += 4) { reserve_virt_addr[i] = 'a'; reserve_virt_addr[i + 1] = 'b'; reserve_virt_addr[i + 2] = 'c'; reserve_virt_addr[i + 3] = 'd'; } } else { unregister_chrdev(major, "mmapdrv"); return - ENODEV; } return 0; } /* remove the module */ void cleanup_module(void) { if (reserve_virt_addr) iounmap(reserve_virt_addr); unregister_chrdev(major, "mmapdrv"); return ; } int mmapdrv_open(struct inode *inode, struct file *file) { MOD_INC_USE_COUNT; return (0); } int mmapdrv_release(struct inode *inode, struct file *file) { MOD_DEC_USE_COUNT; return (0); } int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma) { unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; unsigned long size = vma->vm_end - vma->vm_start; if (size > mem_size *1024 * 1024) { printk("size too big/n"); return ( - ENXIO); } offset = offset + mem_start * 1024 * 1024; /* we do not want to have this area swapped out, lock it */ vma->vm_flags |= VM_LOCKED; if (remap_page_range(vma, vma->vm_start, offset, size, PAGE_SHARED)) { printk("remap page range failed/n"); return - ENXIO; } return (0); } |
int remap_page_range(vma_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_tprot); |