博文参考standford UFLDL网页教程线性解码器。
1、线性解码器
前面说过的稀疏自编码器是一个三层的feed-forward神经网络结构,包含输入层、隐含层和输出层,隐含层和输出层采用的激活函数都是sigmoid函数,由于sigmoid函数的y值范围在[0,1],这就要求输入也要在这个范围内,MNIST数据是在这个范围内的,但是对于有些数据,我们不知道用什么办法缩放到[0,1]才合适,所以就有线性解码器。线性解码器(linear decoders)其实就是输出层采用线性激活函数,最简单的线性激活函数就是恒等激活函数,就是a=f(z)=z。但是中间隐含层必须采用sigmoid函数或者tanh函数,这两个都是对输入的非线性变换,如果采用线性变换,一方面表达能力没有那么强,另一方面就是没有必要采用三层结构了,直接隐含层当做输出层也可以学到一样的函数关系。有了线性解码器之后,输入层的单元就没必要限制在[0,1]了。
线性解码器的输出层可以通过调整W2使得输出数值可以大于1或者小于0。
对于线性解码器,当输出层的激活函数变为恒等激活函数,输出单元的误差项变为:
使用BP算法计算隐含层单元的误差为:
2、Learning color features with Sparse Autoencoders
关于实验的一些说明:
Matlab代码把sparseAutoencoderCost.m的代码复制到sparseAutoencoderLinearCost.m并修改几行即可.
function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lambda, sparsityParam, beta, data) % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % lambda: weight decay parameter % sparsityParam: The desired average activation for the hidden units (denoted in the lecture % notes by the greek alphabet rho, which looks like a lower-case "p"). % beta: weight of sparsity penalty term % data: Our 192x1000000 matrix containing the training data. So, data(:,i) is the i-th training example. % The input theta is a vector (because minFunc expects the parameters to be a vector). % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); % Cost and gradient variables (your code needs to compute these values). % Here, we initialize them to zeros. cost = 0; W1grad = zeros(size(W1)); W2grad = zeros(size(W2)); b1grad = zeros(size(b1)); b2grad = zeros(size(b2)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder, % and the corresponding gradients W1grad, W2grad, b1grad, b2grad. % % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation. % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions % as b1, etc. Your code should set W1grad to be the partial derivative of J_sparse(W,b) with % respect to W1. I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) % with respect to the input parameter W1(i,j). Thus, W1grad should be equal to the term % [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 % of the lecture notes (and similarly for W2grad, b1grad, b2grad). % % Stated differently, if we were using batch gradient descent to optimize the parameters, % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. % %矩阵向量化形式实现,速度比不用向量快得多 Jocst = 0; %平方误差 Jweight = 0; %规则项惩罚 Jsparse = 0; %稀疏性惩罚 [n, m] = size(data); %m为样本数,这里是1000000,n为样本维数,这里是192 %feedforward前向算法计算隐含层和输出层的每个节点的z值(线性组合值)和a值(激活值) %data每一列是一个样本, z2 = W1*data + repmat(b1,1,m); %W1*data的每一列是每个样本的经过权重W1到隐含层的线性组合值,repmat把列向量b1扩充成m列b1组成的矩阵 a2 = sigmoid(z2); z3 = W2*a2 + repmat(b2,1,m); %%%%对于线性解码器,要修改下面一行%%%% %a3 = sigmoid(z3); a3 = z3; %%%%%%%%%%%%%%%%%%%% %计算预测结果与理想结果的平均误差 Jcost = (0.5/m)*sum(sum((a3-data).^2)); %计算权重惩罚项 Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2))); %计算稀疏性惩罚项 rho_hat = (1/m)*sum(a2,2); Jsparse = sum(sparsityParam.*log(sparsityParam./rho_hat)+(1-sparsityParam).*log((1-sparsityParam)./(1-rho_hat))); %计算总损失函数 cost = Jcost + lambda*Jweight + beta*Jsparse; %%%% 修改下面一行对a3的求导%%%%% %反向传播求误差值 %delta3 = -(data-a3).*fprime(a3); %每一列是一个样本对应的误差 delta3 = -(data-a3); %%%%%%%%%%%%%%%%%%%%%% sterm = beta*(-sparsityParam./rho_hat+(1-sparsityParam)./(1-rho_hat)); delta2 = (W2'*delta3 + repmat(sterm,1,m)).*fprime(a2); %计算梯度 W2grad = delta3*a2'; W1grad = delta2*data'; W2grad = W2grad/m + lambda*W2; W1grad = W1grad/m + lambda*W1; b2grad = sum(delta3,2)/m; %因为对b的偏导是个向量,这里要把delta3的每一列加起来 b1grad = sum(delta2,2)/m; %%---------------------------------- % %对每个样本进行计算, non-vectorial implementation % [n m] = size(data); % a2 = zeros(hiddenSize,m); % a3 = zeros(visibleSize,m); % Jcost = 0; %平方误差项 % rho_hat = zeros(hiddenSize,1); %隐含层每个节点的平均激活度 % Jweight = 0; %权重衰减项 % Jsparse = 0; % 稀疏项代价 % % for i=1:m % %feedforward向前转播 % z2(:,i) = W1*data(:,i)+b1; % a2(:,i) = sigmoid(z2(:,i)); % z3(:,i) = W2*a2(:,i)+b2; % %a3(:,i) = sigmoid(z3(:,i)); % a3(:,i) = z3(:,i); % Jcost = Jcost+sum((a3(:,i)-data(:,i)).*(a3(:,i)-data(:,i))); % rho_hat = rho_hat+a2(:,i); %累加样本隐含层的激活度 % end % % rho_hat = rho_hat/m; %计算平均激活度 % Jsparse = sum(sparsityParam*log(sparsityParam./rho_hat) + (1-sparsityParam)*log((1-sparsityParam)./(1-rho_hat))); %计算稀疏代价 % Jweight = sum(W1(:).*W1(:))+sum(W2(:).*W2(:));%计算权重衰减项 % cost = Jcost/2/m + Jweight/2*lambda + beta*Jsparse; %计算总代价 % % for i=1:m % %backpropogation向后传播 % %delta3 = -(data(:,i)-a3(:,i)).*fprime(a3(:,i)); % delta3 = -(data(:,i)-a3(:,i)); % delta2 = (W2'*delta3 +beta*(-sparsityParam./rho_hat+(1-sparsityParam)./(1-rho_hat))).*fprime(a2(:,i)); % % W2grad = W2grad + delta3*a2(:,i)'; % W1grad = W1grad + delta2*data(:,i)'; % b2grad = b2grad + delta3; % b1grad = b1grad + delta2; % end % %计算梯度 % W1grad = W1grad/m + lambda*W1; % W2grad = W2grad/m + lambda*W2; % b1grad = b1grad/m; % b2grad = b2grad/m; % ------------------------------------------------------------------- % After computing the cost and gradient, we will convert the gradients back % to a vector format (suitable for minFunc). Specifically, we will unroll % your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end %% Implementation of derivation of f(z) % f(z) = sigmoid(z) = 1./(1+exp(-z)) % a = 1./(1+exp(-z)) % delta(f) = a.*(1-a) function dz = fprime(a) dz = a.*(1-a); end %% %------------------------------------------------------------------- % Here's an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end