- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- deepseek_各个版本django特性
终是蝶衣梦晓楼
django数据库python
以下是Django2.0至5.0的主要区别总结,按版本特性分类说明:1.Django2.0的主要变化Python支持仅支持Python3.4+,不再兼容Python2.x。路由系统弃用url(),引入path()和re_path()替代,path()默认不支持正则表达式,但提供内置转换器(如)进行参数类型匹配。支持更简洁的URL配置语法(例如path('articles//',views.year
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- DeepSeek 助力 Vue 开发:打造丝滑的导航栏(Navbar)
宝码香车
#DeepSeekvue.js前端javascriptecmascriptDeepSeek
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦目录DeepSeek助力Vue开发:打造丝滑的导航栏(Navbar)前言页面效果指令输入属性定义1.导航栏样式相关2.导航项相关3.响应式相关4.对齐方式相关事件定义1.导航项点击事件2.菜单折叠切换事件其他建议1.可访问性2.动画效果3.图标支
- 机器学习(1)安装Pytorch
CoderIsArt
机器学习与深度学习机器学习pytorch人工智能
1.安装命令pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1182.安装过程Log:Lookinginindexes:https://download.pytorch.org/whl/cu118CollectingtorchDownloadinghttps://download.
- 探索Vearch:高效的深度学习向量相似度搜索系统
scaFHIO
深度学习人工智能python
Vearch是一个可扩展的分布式系统,用于高效搜索深度学习向量的相似度。在本文中,我们将介绍Vearch的技术背景及其核心原理,演示如何使用VearchPythonSDK进行安装和设置,并分析一些实际应用场景,最后提供一些实战建议。技术背景介绍随着深度学习技术的发展,向量相似度搜索在各类应用中变得越来越重要。从图像识别、推荐系统到自然语言处理,向量搜索可以极大地提升系统的性能。然而,随着数据量的增
- 27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?
程序员yt
java机器学习开发语言
今天给大家分享的是一位粉丝的提问,27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:211建筑本科,22年毕业后gap一年转码去了英国读的QS100的it的水硕(24年12月份毕业),转码后对就业形势认知不足,时间全花在课业上,八股文和算法准备的不充足,秋招算是惨败。读研
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- Python —— 深拷贝和浅拷贝
奶香臭豆腐
python开发语言学习
Python——深拷贝和浅拷贝浅拷贝——ShallowCopy深拷贝——DeepCopy总结常见的应用场景浅拷贝——ShallowCopy浅拷贝是指复制对象本身,但不会复制对象内部的嵌套对象。换句话说,浅拷贝会创建一个新的对象,但是新对象中的元素是原始对象元素的引用(即指向同一块内存地址)。因此,若原始对象中的元素是可变对象,修改这些元素会影响到原始对象和拷贝对象。s="abcdef123456"
- AI外呼机器人:营销新利器还是骚扰电话的升级版?
yoloGina
客户管理外呼系统电话外呼人工智能机器人
"您好,这里是XX房产,最近有购房需求吗?""您好,您最近有种牙需求吗?"相信很多人都接到过类似的营销电话,而电话那头,很可能已经不是真人,而是AI外呼机器人。近年来,AI外呼系统凭借其高效率、低成本的优势,迅速在电销行业普及,成为企业营销的"新宠"。据统计,2022年中国AI外呼市场规模已达50亿元,预计2025年将突破100亿元。AI外呼系统的核心技术是语音识别和自然语言处理。通过深度学习海量
- DeepSeek指导手册从入门到精通
向画
功能javac语言lualaraveleclipsegithubvue.js
第一章:准备篇(30分钟上手)1.1三分钟创建你的AI伙伴步骤详解访问官网:在浏览器输入「www.deepseek.com」。注册账号:点击右上角「笑脸图标」,选择「邮箱/手机注册」(建议使用常用邮箱)。验证身份:查看收件箱找到验证邮件,点击蓝色确认按钮(找不到可检查垃圾箱)。首次登录:输入密码时建议使用「大小写字母+数字」组合(例如:Deep2024@seek)。避坑指南如果遇到验证码不显示,尝
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 吐血整理!权重持久化方案优化,让你的模型性能飙升
盼达思文体科创
经验分享
吐血整理!权重持久化方案优化,让你的模型性能飙升引言你是否在做深度学习项目时,遭遇过模型训练结果无法有效保存,导致之前的努力付诸东流的痛苦?又或者在模型权重持久化时,发现保存和加载的速度极慢,严重影响项目进度?今天咱们就来好好聊聊权重持久化方案的优化,帮你解决这些让人头疼的问题!核心内容❗传统方案痛点:大多数人都踩过的坑在很多深度学习项目里,大家常用的权重持久化方案存在不少问题。比如说,使用普通的
- 吐血整理!模型热加载能力大比拼,谁才是真正王者?
盼达思文体科创
经验分享
吐血整理!模型热加载能力大比拼,谁才是真正王者?引言你是否在开发过程中,为了模型更新而频繁重启服务,浪费大量时间?又是否疑惑为什么有些模型加载速度快如闪电,而有些却慢得像蜗牛?今天就带你深入了解模型热加载能力的支持对比,让你不再为模型加载问题而烦恼!核心内容模型热加载概念科普场景化描述:想象一下,你正在运营一个基于机器学习模型的在线推荐系统。当你训练出了一个新的、性能更好的模型时,如果不能进行热加
- 百度百舸 DeepSeek 一体机发布,支持昆仑芯 P800 单机 8 卡满血版开箱即用
百度智能云技术站
deepseek百度百舸专有云
在私有云环境中成功部署DeepSeek满血版并实现性能调优,并不是一件容易的事情。选择合适的GPU配置、安装相应的环境、成功部署上线业务、加速推理任务加速、支撑多用户并发……完成业务测试,成功融入生产业务中。为了帮助企业快速实现DeepSeek服务的落地,百度智能云推出「百度百舸DeepSeek一体机」。百度百舸DeepSeek一体机基于百度百舸平台打造,提供纯国产的算力组合,支持昆仑芯P800单
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- python中的深度学习框架TensorFlow 和 PyTorch 有什么区别?
大懒猫软件
python深度学习tensorflowpytorch
TensorFlow和PyTorch是目前最流行的两个深度学习框架,它们在设计理念、使用方式和社区支持等方面存在一些显著的区别。以下是它们的主要区别:1.设计理念TensorFlow:静态计算图:TensorFlow使用静态计算图,即在运行模型之前需要先定义整个计算图。这使得TensorFlow在大规模分布式训练和部署时具有优势,但调试和动态修改模型时可能不够灵活。功能全面:TensorFlow提
- deepseek编曲
alankuo
人工智能
DeepSeek编曲是指利用DeepSeek这一AI工具进行音乐编曲的过程,以下是其相关介绍:DeepSeek编曲的功能特点丰富多样的风格适配:能够驾驭多种音乐风格,无论是流行、古典、民谣还是古风等,都可以根据用户需求生成相应风格的编曲。强大的和弦编排能力:可以轻松为旋律添加各种和弦,从简单的三和弦到复杂的七和弦都能信手拈来,还能给出合理的和弦进行方案,如在创作《写给姐姐》时给出了主歌C-G-Am
- 人工智能与机器学习入门:决策树应用
决策树机器学习入门
在人工智能与机器学习入门:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行机器学习入门的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。什么是决策树决策树,简单来讲可以认为是一个大的ifelse判断树,有了决策树后,测试集中的数据便可以使用该决策树进行判断了。比如根据Titanic的训练数据构造了上次决策树后,便可以根据测试数据的性别
- 本地运行 DeepSeek-R1 的成本究竟多高?
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读本地运行DeepSeek-R1的成本究竟多高?DeepSeek让人们对大规模生成式模型的追求更进一步,甚至有人想在本地跑下规模高达671B参数的版本。但要在家里开这种“巨无霸”,可不是闹着玩的:光是推理就对硬件提出了非常高的要求。这篇文章将大致拆解一下,如果真想在个人电脑上运行DeepSeek-R1,可能需
- 怎么使用DeepSeek?DeepSeek使用教程
轻创思维
网络
1.简介DeepSeek是一款基于人工智能技术的智能搜索引擎和信息检索工具。它能够通过自然语言处理技术理解用户的查询需求,并提供精准、全面的搜索结果。无论您是想查找信息、解答问题还是进行创意写作,DeepSeek都能为您提供高效的支持。2.主要功能智能搜索:支持自然语言输入,快速获取精准结果。多语言支持:支持中文、英文及其他多种语言的输入和输出。知识库覆盖:整合海量互联网信息,覆盖百科、新闻、学术
- DeepSeek 助力 Vue 开发:打造丝滑的表单验证(Form Validation)
宝码香车
#DeepSeekvue.js前端javascriptecmascriptDeepSeek
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦目录DeepSeek助力Vue开发:打造丝滑的表单验证(FormValidation)前言页面效果指令输入组件属性定义1.表单数据绑定相关2.验证规则相关3.样式和布局相关4.其他组件事件定义1.验证相关2.表单提交相关3.字段值变化相关其他可能
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option