大家对斐波那契数列想必都很熟悉:
a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1)。
现在考虑如下生成的斐波那契数列:
a0 = 1, ai = aj + ak, i > 0, j, k从[0, i-1]的整数中随机选出(j和k独立)。
现在给定n,要求求出E(an),即各种可能的a数列中an的期望值。
一行一个整数n,表示第n项。(1<=n<=500)
一行一个实数,表示答案。你的输出和答案的绝对或者相对误差小于10-6时被视为正确答案。
共存在3种可能的数列
1,2,2 1/4
1,2,3 1/2
1,2,4 1/4
所以期望为3。
2
3.000000
由期望公式
直接把第i个数期望算出来,递推
PS:易证E[i]=i+1
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<functional> #include<iostream> #include<cmath> #include<cctype> #include<ctime> using namespace std; #define For(i,n) for(int i=1;i<=n;i++) #define Fork(i,k,n) for(int i=k;i<=n;i++) #define Rep(i,n) for(int i=0;i<n;i++) #define ForD(i,n) for(int i=n;i;i--) #define RepD(i,n) for(int i=n;i>=0;i--) #define Forp(x) for(int p=pre[x];p;p=next[p]) #define Forpiter(x) for(int &p=iter[x];p;p=next[p]) #define Lson (x<<1) #define Rson ((x<<1)+1) #define MEM(a) memset(a,0,sizeof(a)); #define MEMI(a) memset(a,127,sizeof(a)); #define MEMi(a) memset(a,128,sizeof(a)); #define INF (2139062143) #define F (100000007) #define MAXN (500+10) #define MAXn (500) typedef long long ll; ll mul(ll a,ll b){return (a*b)%F;} ll add(ll a,ll b){return (a+b)%F;} ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;} void upd(ll &a,ll b){a=(a%F+b%F)%F;} double E[MAXN]; int main() { // freopen("fib.in","r",stdin); // freopen(".out","w",stdout); E[0]=1; E[1]=2; double s=E[0]+E[1]; Fork(i,2,MAXn) { E[i]=s/(double)i*2; s+=E[i]; } int n; while(cin>>n) cout<<E[n]<<endl; return 0; }