单机安装(Hadoop2.2.0测试用)

需要关闭SELINX,执行:/usr/sbin/setenforce0    

注意:最好是手动关闭。

还有:要把各个服务器的防火墙给关闭了,不然,后面运行时会报错。

 

Linux关闭防火墙命令:1) 永久性生效,重启后不会复原 开启:chkconfigiptables on   关闭:chkconfig iptables off  2) 即时生效,重启后复原   开启:serviceiptables start     关闭:service iptables stop

 

1、创建用户和组

[root@hadoop ~]# groupadd -g 200 hadoop

[root@hadoop ~]# useradd -u 200 -g hadoophadoop

[root@hadoop ~]# passwd hadoop

Changing password for user hadoop.

New UNIX password:

BAD PASSWORD: it is based on a dictionaryword

Retype new UNIX password:

passwd: all authentication tokens updatedsuccessfully.

[root@hadoop ~]# su - hadoop

 

 

2、安装ssh,并配置ssh免密码登录(配置节点之间的信任关系)

                  1)、在hadoop用户下生成密钥:rsa格式的密钥都选择默认格式   

[hadoop@hadoop ~]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key(/home/hadoop/.ssh/id_rsa):

Enter passphrase (empty for nopassphrase):

Enter same passphrase again:

Your identification has been saved in/home/hadoop/.ssh/id_rsa.

Your public key has been saved in/home/hadoop/.ssh/id_rsa.pub.

The key fingerprint is:

1a:d9:48:f8:de:5b:be:e7:1f:5b:fd:48:df:59:59:94hadoop@hadoop

[hadoop@hadoop ~]$ cd .ssh

[hadoop@hadoop .ssh]$ ls

id_rsa id_rsa.pub

 

                        

                              dsa格式的密钥:也都选择默认的路径                     

[hadoop@hadoop .ssh]$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key(/home/hadoop/.ssh/id_dsa):

Enter passphrase (empty for nopassphrase):

Enter same passphrase again:

Your identification has been saved in/home/hadoop/.ssh/id_dsa.

Your public key has been saved in/home/hadoop/.ssh/id_dsa.pub.

The key fingerprint is:

71:bf:c6:f3:dc:ca:1f:24:8c:0b:7e:94:6f:a2:98:8ahadoop@hadoop

[hadoop@hadoop .ssh]$ ls

id_dsa id_dsa.pub  id_rsa  id_rsa.pub

 

 

      把公钥添加到密钥中去

[hadoop@hadoop ~]$  cat .ssh/id_rsa.pub >>.ssh/authorized_keys

[hadoop@hadoop ~]$  cat .ssh/id_dsa.pub >>.ssh/authorized_keys

[hadoop@hadoop ~]$ cd .ssh

[hadoop@hadoop .ssh]$ ls

authorized_keys  id_dsa id_dsa.pub  id_rsa  id_rsa.pub

 

authorized_keys权限进行修改如果不修改,登陆时还是需要密码[hadoop@hadoop .ssh]$ chmod 644 authorized_keys

chmod go-wx  authorized_keys

[hadoop@hadoop1 .ssh]$ ll

total 32

-rw-rw-r-- 1 hadoop hadoop  396 Dec 19 11:20 authorized_keys

-rw------- 1 hadoop hadoop 1675 Dec 1911:19 id_rsa

-rw-r--r-- 1 hadoop hadoop  396 Dec 19 11:19 id_rsa.pub

-rw-r--r-- 1 hadoop hadoop  402 Dec 19 11:20 known_hosts

[hadoop@hadoop1 .ssh]$ chmod go-wxauthorized_keys

[hadoop@hadoop1 .ssh]$ ll

total 32

-rw-r--r-- 1 hadoop hadoop  396 Dec 19 11:20 authorized_keys

-rw------- 1 hadoop hadoop 1675 Dec 1911:19 id_rsa

-rw-r--r-- 1 hadoop hadoop  396 Dec 19 11:19 id_rsa.pub

-rw-r--r-- 1 hadoop hadoop  402 Dec 19 11:20 known_hosts

[hadoop@hadoop1 .ssh]$ ssh hadoop1

Last login: Thu Dec 19 11:20:39 2013 fromhadoop1

 

 

验证ssh:无需密码登陆本机

[oracle@hadoop ~]$ ssh hadoop

Last login: Wed Dec 18 15:38:25 2013 fromhadoop

 

注意:在配置ssh时,只需配置rsa即可,可以不用配置dsa也可以实现无密码登陆。

 

3、下载并安装 JAVA JDK系统软件

(注意:在root用户下安装,不然会报错)

请参考linux中安装jdk

#下载jdk

wget http://60.28.110.228/source/package/jdk-6u21-linux-i586-rpm.bin

#安装jdk

chmod +x jdk-6u21-linux-i586-rpm.bin       别忘了赋权限

./jdk-6u21-linux-i586-rpm.bin

 

安装,执行命令

[root@hn ~]# rpm -ivh jdk-6u17-linux-i586.rpm

(jdk的默认路径为/usr/java/jdk1.6.0_17)

 

 

 

#配置环境变量

注意:此处可以修改.bash_profile也可以修改/etc/profile,也可以修改 /etc/profile.d/java.sh。最好修改/etc/profile文件,因为其是每个用户通用的!

[root@linux64 ~]# vi .bash_profile

# .bash_profile

 

# Get the aliases and functions

if [ -f ~/.bashrc ]; then

       . ~/.bashrc

fi

 

# User specific environment and startupprograms

 

PATH=$PATH:$HOME/bin

 

export PATH

unset USERNAME

 

添加java的参数

export JAVA_HOME=/usr/java/jdk1.6.0_21

export HADOOP_HOME=/opt/modules/hadoop/hadoop-1.0.3

exportPATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$PATH

 

 

vi /etc/profile.d/java.sh 

#复制粘贴一下内容 到 vi 中。

exportJAVA_HOME=/home/hadoop/java/jdk1.8.0_25

exportHADOOP_HOME=/home/hadoop/hadoop/hadoop-2.2.0

exportPATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_YARN_HOME=$HADOOP_HOME

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

exportHADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

exportHADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

 

#手动立即生效

source /etc/profile 

 

(记得修改后要重启系统)然后,再测试

 

#测试

jps

 

 

4、检查基础环境

/sbin/ifconfig

[hadoop@master root]$ /sbin/ifconfig

eth0      Link encap:Ethernet  HWaddr 00:0C:29:7A:DE:12 

          inet addr:192.168.1.100  Bcast:192.168.1.255  Mask:255.255.255.0

          inet6 addr: fe80::20c:29ff:fe7a:de12/64 Scope:Link

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1

          RX packets:14 errors:0 dropped:0 overruns:0 frame:0

          TX packets:821 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:1000

          RX bytes:1591 (1.5 KiB)  TX bytes:81925 (80.0 KiB)

          Interrupt:67 Base address:0x2024

 

ping master

ssh master

jps

echo $JAVA_HOME

echo $HADOOP_HOME

hadoop

 

 

5、Hadoop 单机系统 安装配置

注意:Hadoop2.2.0与Hadoop1.x.x的配置文件路径不同,Hadoop1.x.x默认是在Hadoop的解压路径下;Hadoop2.2.0的默认是在解压路径下的etc/hadoop

[hadoop@hadoop2 sbin]$ ls/home/hadoop/hadoop/hadoop-2.2.0/etc/

hadoop

[hadoop@hadoop2 sbin]$ ls/home/hadoop/hadoop/hadoop-2.2.0/etc/hadoop/

capacity-scheduler.xml      hdfs-site.xml               mapred-site.xml

configuration.xsl           httpfs-env.sh               mapred-site.xml.template

container-executor.cfg      httpfs-log4j.properties     slaves

core-site.xml               httpfs-signature.secret     ssl-client.xml.example

hadoop-env.cmd              httpfs-site.xml             ssl-server.xml.example

hadoop-env.sh               log4j.properties            yarn-env.cmd

hadoop-metrics2.properties  mapred-env.cmd              yarn-env.sh

hadoop-metrics.properties   mapred-env.sh               yarn-site.xml

hadoop-policy.xml           mapred-queues.xml.template

1)、Hadoop 文件下载和解压

将安装包hadoop-2.2.0.tar.gz存放到某一目录下,并解压#解压 复制或者下载的Hadoop 文件

 

2)、修改配置文件

修改解压后的目录中的文件夹etc/hadoop下的xml配置文件(如果文件不存在,则自己创建)

ühadoop-env.sh修改以下配置:

exportJAVA_HOME=/home/hadoop/java/jdk1.8.0_25

 

3)、Slaves文件修改为以下配置:

Hadoop2

 

 

4)、HadoopCommon组件 配置core-site.xml

#编辑 core-site.xml 文件

vi/opt/modules/hadoop/hadoop-1.0.3/conf/core-site.xml

core-site.xml(其中“YARN001”是在/etc/hosts中设置的host,如果未设置,则换为localhost):

<property>

<name>fs.default.name</name>

<value>hdfs://hadoop2:9000</value>

</property>

 

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

 

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hadoop/hadoop/hadoop-2.2.0/dfs/name</value>

</property>

 

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hadoop/hadoop/hadoop-2.2.0/dfs/data</value>

</property>

其中,各个目录一定是非/tmp下的目录

 

 

 

5)、yarn-site.xml:yarn-site.xml:

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

 

6)、mapred-site.xml

 

[oracle@hadoop conf]$ vi mapred-site.xml

 

mapred-site.xml:

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

 

6、Hadoop2.2.0命令

注意:Hadoop2.2.0的操作命令都在安装目录的sbin/目录下/home/hadoop/hadoop/hadoop-2.2.0/sbin

[hadoop@hadoop2 sbin]$ ls/home/hadoop/hadoop/hadoop-2.2.0/sbin/

distribute-exclude.sh    refresh-namenodes.sh  start-secure-dns.sh  stop-dfs.sh

hadoop-daemon.sh         slaves.sh             start-yarn.cmd       stop-secure-dns.sh

hadoop-daemons.sh        start-all.cmd         start-yarn.sh        stop-yarn.cmd

hdfs-config.cmd          start-all.sh          stop-all.cmd         stop-yarn.sh

hdfs-config.sh           start-balancer.sh     stop-all.sh          yarn-daemon.sh

httpfs.sh                start-dfs.cmd         stop-balancer.sh     yarn-daemons.sh

mr-jobhistory-daemon.sh  start-dfs.sh          stop-dfs.cmd

 

启动服务:

ü格式化HDFS:

bin/hadoop namenode -format

ü启动HDFS:

sbin/start-dfs.sh

ü启动YARN:

sbin/start-yarn.sh

 

7、测试

1)、访问URL地址:http://yarn001:8088

2)访问URL地址:http://yarn001:50070

 

 

3)、Wordcount

运行Hadoop自带的测试系统,来统计每个单词的个数:

例如,把/home/hadoop/hadoop-1.0.3/bin目录下的.sh文件都放在Hadoop上,运行Hadoop的测试系统来统计每个单词的数量

在Hadoop根目录下创建一个input文件夹,并把/home/hadoop/hadoop-1.0.3/bin目录下的.sh文件都放在Hadoop上input中

[hadoop@hadoopbin]$ hadoop fs -mkdir /input

[hadoop@hadoopbin]$ ls

hadoop             start-all.sh               stop-balancer.sh

hadoop-config.sh   start-balancer.sh          stop-dfs.sh

hadoop-daemon.sh   start-dfs.sh               stop-jobhistoryserver.sh

hadoop-daemons.sh  start-jobhistoryserver.sh  stop-mapred.sh

rcc                start-mapred.sh            task-controller

slaves.sh          stop-all.sh

[hadoop@hadoopbin]$ hadoop fs -put *.sh /input

[hadoop@hadoopbin]$ hadoop fs -ls /input

Found 14items

-rw-r--r--   1 hadoop supergroup       2377 2014-05-10 11:14 /input/hadoop-config.sh

-rw-r--r--   1 hadoop supergroup       4336 2014-05-10 11:14/input/hadoop-daemon.sh

-rw-r--r--   1 hadoop supergroup       1329 2014-05-10 11:14/input/hadoop-daemons.sh

-rw-r--r--   1 hadoop supergroup       2143 2014-05-10 11:14 /input/slaves.sh

-rw-r--r--   1 hadoop supergroup       1166 2014-05-10 11:14/input/start-all.sh

-rw-r--r--   1 hadoop supergroup       1065 2014-05-10 11:14/input/start-balancer.sh

-rw-r--r--   1 hadoop supergroup       1745 2014-05-10 11:14 /input/start-dfs.sh

-rw-r--r--   1 hadoop supergroup       1145 2014-05-10 11:14/input/start-jobhistoryserver.sh

-rw-r--r--   1 hadoop supergroup       1259 2014-05-10 11:14/input/start-mapred.sh

-rw-r--r--   1 hadoop supergroup       1119 2014-05-10 11:14 /input/stop-all.sh

-rw-r--r--   1 hadoop supergroup       1116 2014-05-10 11:14/input/stop-balancer.sh

-rw-r--r--   1 hadoop supergroup       1246 2014-05-10 11:14 /input/stop-dfs.sh

-rw-r--r--   1 hadoop supergroup       1131 2014-05-10 11:14/input/stop-jobhistoryserver.sh

-rw-r--r--   1 hadoop supergroup       1168 2014-05-10 11:14/input/stop-mapred.sh

[hadoop@hadoopbin]$

 

运行Hadoop自带的计数程序:

[[email protected]]$ hadoop jar hadoop-examples-1.0.3.jar wordcount /input  /output

14/05/1011:19:14 INFO input.FileInputFormat: Total input paths to process : 14

14/05/1011:19:14 INFO util.NativeCodeLoader: Loaded the native-hadoop library

14/05/1011:19:14 WARN snappy.LoadSnappy: Snappy native library not loaded

14/05/1011:19:15 INFO mapred.JobClient: Running job: job_201405101042_0001

14/05/1011:19:16 INFO mapred.JobClient:  map 0%reduce 0%

14/05/1011:19:31 INFO mapred.JobClient:  map 14%reduce 0%

14/05/1011:19:40 INFO mapred.JobClient:  map 28%reduce 4%

14/05/1011:19:46 INFO mapred.JobClient:  map 42%reduce 4%

14/05/1011:19:49 INFO mapred.JobClient:  map 42%reduce 9%

14/05/1011:19:52 INFO mapred.JobClient:  map 57%reduce 9%

14/05/1011:20:00 INFO mapred.JobClient:  map 57%reduce 14%

14/05/1011:20:03 INFO mapred.JobClient:  map 64%reduce 14%

14/05/1011:20:06 INFO mapred.JobClient:  map 71%reduce 19%

14/05/1011:20:09 INFO mapred.JobClient:  map 78%reduce 19%

14/05/1011:20:12 INFO mapred.JobClient:  map 85%reduce 21%

14/05/1011:20:15 INFO mapred.JobClient:  map 92%reduce 21%

14/05/10 11:20:18INFO mapred.JobClient:  map 100% reduce26%

14/05/1011:20:30 INFO mapred.JobClient:  map 100%reduce 100%

14/05/1011:20:35 INFO mapred.JobClient: Job complete: job_201405101042_0001

14/05/1011:20:35 INFO mapred.JobClient: Counters: 29

14/05/10 11:20:35INFO mapred.JobClient:   Job Counters

14/05/1011:20:35 INFO mapred.JobClient:    Launched reduce tasks=1

14/05/1011:20:35 INFO mapred.JobClient:    SLOTS_MILLIS_MAPS=90823

14/05/1011:20:35 INFO mapred.JobClient:     Totaltime spent by all reduces waiting after reserving slots (ms)=0

14/05/1011:20:35 INFO mapred.JobClient:     Totaltime spent by all maps waiting after reserving slots (ms)=0

14/05/1011:20:35 INFO mapred.JobClient:    Launched map tasks=14

14/05/1011:20:35 INFO mapred.JobClient:    Data-local map tasks=14

14/05/1011:20:35 INFO mapred.JobClient:    SLOTS_MILLIS_REDUCES=56147

14/05/1011:20:35 INFO mapred.JobClient:   FileOutput Format Counters

14/05/1011:20:35 INFO mapred.JobClient:     BytesWritten=6185

14/05/1011:20:35 INFO mapred.JobClient:  FileSystemCounters

14/05/1011:20:35 INFO mapred.JobClient:    FILE_BYTES_READ=28744

14/05/1011:20:35 INFO mapred.JobClient:    HDFS_BYTES_READ=23862

14/05/1011:20:35 INFO mapred.JobClient:    FILE_BYTES_WRITTEN=381254

14/05/1011:20:35 INFO mapred.JobClient:    HDFS_BYTES_WRITTEN=6185

14/05/1011:20:35 INFO mapred.JobClient:   FileInput Format Counters

14/05/1011:20:35 INFO mapred.JobClient:     BytesRead=22345

14/05/1011:20:35 INFO mapred.JobClient:   Map-ReduceFramework

14/05/1011:20:35 INFO mapred.JobClient:     Mapoutput materialized bytes=28822

14/05/1011:20:35 INFO mapred.JobClient:     Mapinput records=691

14/05/1011:20:35 INFO mapred.JobClient:    Reduce shuffle bytes=28822

14/05/1011:20:35 INFO mapred.JobClient:    Spilled Records=4022

14/05/1011:20:35 INFO mapred.JobClient:     Mapoutput bytes=34175

14/05/1011:20:35 INFO mapred.JobClient:     Totalcommitted heap usage (bytes)=2266947584

14/05/1011:20:35 INFO mapred.JobClient:     CPUtime spent (ms)=8610

14/05/1011:20:35 INFO mapred.JobClient:    Combine input records=3139

14/05/1011:20:35 INFO mapred.JobClient:    SPLIT_RAW_BYTES=1517

14/05/1011:20:35 INFO mapred.JobClient:    Reduce input records=2011

14/05/1011:20:35 INFO mapred.JobClient:    Reduce input groups=499

14/05/1011:20:35 INFO mapred.JobClient:    Combine output records=2011

14/05/1011:20:35 INFO mapred.JobClient:    Physical memory (bytes) snapshot=2006347776

14/05/1011:20:35 INFO mapred.JobClient:     Reduceoutput records=499

14/05/1011:20:35 INFO mapred.JobClient:    Virtual memory (bytes) snapshot=5150412800

14/05/1011:20:35 INFO mapred.JobClient:     Mapoutput records=3139

[[email protected]]$

 

举例来查找sh文件中的某个单词的个数,例如,查找required的个数为14个,并与Hadoop运行的结果对比

[hadoop@hadoopbin]$ grep required *.sh

hadoop-config.sh:#Unless required by applicable law or agreed to in writing, software

hadoop-daemon.sh:#Unless required by applicable law or agreed to in writing, software

hadoop-daemons.sh:#Unless required by applicable law or agreed to in writing, software

slaves.sh:#Unless required by applicable law or agreed to in writing, software

start-all.sh:#Unless required by applicable law or agreed to in writing, software

start-balancer.sh:#Unless required by applicable law or agreed to in writing, software

start-dfs.sh:#Unless required by applicable law or agreed to in writing, software

start-jobhistoryserver.sh:#Unless required by applicable law or agreed to in writing, software

start-mapred.sh:#Unless required by applicable law or agreed to in writing, software

stop-all.sh:#Unless required by applicable law or agreed to in writing, software

stop-balancer.sh:#Unless required by applicable law or agreed to in writing, software

stop-dfs.sh:#Unless required by applicable law or agreed to in writing, software

stop-jobhistoryserver.sh:#Unless required by applicable law or agreed to in writing, software

stop-mapred.sh:#Unless required by applicable law or agreed to in writing, software

[hadoop@hadoopbin]$ grep required *.sh | wc

     14    168    1209

 

4)、通过界面查看集群部署部署成功

            1)、#检查 jobtracker 和 tasktracker 是否正常http://master:50030/

查看hadoop启动是否成功:在浏览器中输入  http://localhost:50030 来查看mapreduce是否正常启动

注意:网址中输入为主机名hadoop,也可以用本地服务名localhost,得到的结果是一样的,都可以验证hadoop正常启动了。

 

 

在浏览器中输入  http://localhost:50070 来查看jobtracker是否正常启动

 

 

2)、检查 namenode 和 datanode 是否正常http://master:50070/

使用的hadoop的命令:在hadoop安装目录bin下执行(也可以直接执行,因为已经配置好了环境变量)

[oracle@hadoopbin]$ ./hadoop fs -put stop-all.sh hdfs://hadoop:9000/

Warning:$HADOOP_HOME is deprecated.

将任意一个脚本(如stop-all.sh)存储到hadoop的目录当中,这里需要指定hadoop的入口hdfs://hadoop:9000/

 

 

 

然后,点击Browse the filesystem:可以看出已经成功执行了改命令

其中,stop-all.sh脚本在hadoop根目录下;tmp为hadoop自己生成的目录,可以不用问。

5)、通过执行 Hadoop pi 运行样例检查集群是否成功

cd/opt/modules/hadoop/hadoop-1.0.3

bin/hadoopjar hadoop-examples-1.0.3.jar pi 10 100

 

#集群正常效果如下

12/07/15 10:50:48 INFO mapred.FileInputFormat: Total input paths to process : 10

12/07/15 10:50:48 INFO mapred.JobClient: Running job: job_201207151041_0001

12/07/15 10:50:49 INFO mapred.JobClient:  map 0% reduce 0%

12/07/15 10:51:42 INFO mapred.JobClient:  map 40% reduce 0%

12/07/15 10:52:07 INFO mapred.JobClient:  map 70% reduce 13%

12/07/15 10:52:10 INFO mapred.JobClient:  map 80% reduce 16%

12/07/15 10:52:11 INFO mapred.JobClient:  map 90% reduce 16%

12/07/15 10:52:22 INFO mapred.JobClient:  map 100% reduce 100%

.....................

12/07/15 10:52:28 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=2155343872

12/07/15 10:52:28 INFO mapred.JobClient:     Map output records=20

Job Finished in 100.608 seconds

Estimated value of Pi is 3.14800000000000000000

 

[[email protected]]$ hadoop jar hadoop-examples-1.0.3.jar pi 10 100

Warning:$HADOOP_HOME is deprecated.

 

Number ofMaps  = 10

Samples perMap = 100

Wrote inputfor Map #0

Wrote inputfor Map #1

Wrote inputfor Map #2

Wrote inputfor Map #3

Wrote inputfor Map #4

Wrote inputfor Map #5

Wrote inputfor Map #6

Wrote inputfor Map #7

Wrote inputfor Map #8

Wrote inputfor Map #9

Starting Job

13/12/1908:25:36 INFO mapred.FileInputFormat: Total input paths to process : 10

13/12/1908:25:36 INFO mapred.JobClient: Running job: job_201312181743_0001

13/12/1908:25:37 INFO mapred.JobClient:  map 0%reduce 0%

13/12/1908:25:52 INFO mapred.JobClient:  map 20%reduce 0%

13/12/1908:25:58 INFO mapred.JobClient:  map 40%reduce 0%

13/12/1908:26:04 INFO mapred.JobClient:  map 60%reduce 0%

13/12/1908:26:12 INFO mapred.JobClient:  map 80%reduce 13%

13/12/1908:26:18 INFO mapred.JobClient:  map 100%reduce 26%

13/12/1908:26:29 INFO mapred.JobClient:  map 100%reduce 100%

13/12/1908:26:34 INFO mapred.JobClient: Job complete: job_201312181743_0001

13/12/1908:26:34 INFO mapred.JobClient: Counters: 30

13/12/1908:26:34 INFO mapred.JobClient:   JobCounters

13/12/1908:26:34 INFO mapred.JobClient:    Launched reduce tasks=1

13/12/1908:26:34 INFO mapred.JobClient:    SLOTS_MILLIS_MAPS=59797

13/12/1908:26:34 INFO mapred.JobClient:     Totaltime spent by all reduces waiting after reserving slots (ms)=0

13/12/1908:26:34 INFO mapred.JobClient:     Total time spent by all maps waiting afterreserving slots (ms)=0

13/12/1908:26:34 INFO mapred.JobClient:    Launched map tasks=10

13/12/1908:26:34 INFO mapred.JobClient:    Data-local map tasks=10

13/12/1908:26:34 INFO mapred.JobClient:    SLOTS_MILLIS_REDUCES=34717

13/12/1908:26:34 INFO mapred.JobClient:   FileInput Format Counters

13/12/1908:26:34 INFO mapred.JobClient:     BytesRead=1180

13/12/1908:26:34 INFO mapred.JobClient:   FileOutput Format Counters

13/12/1908:26:34 INFO mapred.JobClient:     BytesWritten=97

13/12/1908:26:34 INFO mapred.JobClient:  FileSystemCounters

13/12/1908:26:34 INFO mapred.JobClient:    FILE_BYTES_READ=226

13/12/1908:26:34 INFO mapred.JobClient:    HDFS_BYTES_READ=2380

13/12/1908:26:34 INFO mapred.JobClient:    FILE_BYTES_WRITTEN=238526

13/12/1908:26:34 INFO mapred.JobClient:    HDFS_BYTES_WRITTEN=215

13/12/1908:26:34 INFO mapred.JobClient:  Map-Reduce Framework

13/12/1908:26:34 INFO mapred.JobClient:     Mapoutput materialized bytes=280

13/12/1908:26:34 INFO mapred.JobClient:     Mapinput records=10

13/12/1908:26:34 INFO mapred.JobClient:    Reduce shuffle bytes=280

13/12/1908:26:34 INFO mapred.JobClient:    Spilled Records=40

13/12/1908:26:34 INFO mapred.JobClient:     Mapoutput bytes=180

13/12/1908:26:34 INFO mapred.JobClient:     Totalcommitted heap usage (bytes)=1623957504

13/12/1908:26:34 INFO mapred.JobClient:     CPUtime spent (ms)=7930

13/12/1908:26:34 INFO mapred.JobClient:     Mapinput bytes=240

13/12/1908:26:34 INFO mapred.JobClient:    SPLIT_RAW_BYTES=1200

13/12/1908:26:34 INFO mapred.JobClient:    Combine input records=0

13/12/1908:26:34 INFO mapred.JobClient:    Reduce input records=20

13/12/1908:26:34 INFO mapred.JobClient:    Reduce input groups=20

13/12/1908:26:34 INFO mapred.JobClient:    Combine output records=0

13/12/1908:26:34 INFO mapred.JobClient:    Physical memory (bytes) snapshot=1480073216

13/12/1908:26:34 INFO mapred.JobClient:    Reduce output records=0

13/12/1908:26:34 INFO mapred.JobClient:    Virtual memory (bytes) snapshot=4101021696

13/12/1908:26:34 INFO mapred.JobClient:     Mapoutput records=20

Job Finishedin 58.087 seconds

Estimatedvalue of Pi is 3.14800000000000000000

[[email protected]]$

 

 8、各个进程的启停操作

#启动 Master node :

/opt/modules/hadoop/hadoop-1.0.3/bin/hadoop-daemon.shstart namenode

 

#启动 JobTracker:

/opt/modules/hadoop/hadoop-1.0.3/bin/hadoop-daemon.shstart jobtracker

 

#启动secondarynamenode:

/opt/modules/hadoop/hadoop-1.0.3/bin/hadoop-daemon.shstart secondarynamenode

 

#启动 DataNode&& TaskTracker:

 

/opt/modules/hadoop/hadoop-1.0.3/bin/hadoop-daemon.shstart datanode

/opt/modules/hadoop/hadoop-1.0.3/bin/hadoop-daemon.shstart tasktracker

 

停止,命令相同,将start换为stop

 

#出现错误可查看日志

tail -f/opt/modules/hadoop/hadoop-1.0.3/logs/*

 

 

你可能感兴趣的:(hadoop2.2单机安装)