CAN调谐器与SILICON调谐器(又称为铁壳调谐器和硅片调谐器)

 

在美国数字电视的转换已经开始,并继续逐渐的过渡。归功于数字机顶盒(STBs),绝大多数有线电视和卫星用户不受影响。即便是没有STB的大多数基本有线电视用户,也有足够的时间进行调整,因为在2009年二月份的“切换”开始之后,模拟信号还将与数字信号并行提供,至少要延续3年。

制造商也必须要改变调谐器架构。但问题是不再是数字或模拟。在过渡时期,模拟调谐器将让路于模拟/数字混合调谐器,并在随后的2011/2012年转换到纯数字的调谐器。目前实际的问题在于是选择CAN还是硅调谐器。

数字硅调谐器以平庸的性能而登场。一开始的性能和图像质量都无法与体积大的CAN调谐器媲美。但并非所有的硅调谐器都是这样的,性能的提升改变了人们的认知。如今,Xceive公司经过实践验证的第二代硅调谐器的性能已经超过了CAN调谐器的性能和图像质量,同时还提供了额外的优点和差异化。

性能和陡壁效应

围绕调谐器性能和信号接收质量,数字接收的引入也带来了一些新问题。使用模拟信号,电视信号随着距离增加时劣化比较缓慢。但对于数字信号却非如此。数字信号要么是可以接收到,要么是收不到。如果电视机距离广播发射机比较远,看到的只能是空白屏幕。同样,建筑物,山体和其他地理上的障碍物都将阻碍数字电视信号。这种戏剧性和突然的图像丢失就是我们所说的陡壁效应。

根据Centris的最新研究显示,由于陡壁效应,数字电视的覆盖比预期的要小很多。研究发现,居住在偏僻地区仅使用室内天线的24%的用户将无法收到数字信号。通过空中(OTA)接收的美国电视用户有超过50%都位于这类不好接收的区域。估计全国1700万只能通过空中接收的电视用户中只有920万用户才能体验到数字电视。

当OTA模拟广播停播并被数字信号取代后,这些家庭极容易遭受陡壁效应而面对空白屏幕。对这些用户来说,唯一的选择就是转用有线电视或卫星电视,但由于住地偏僻,或者是由于地理上的视距阻挡而无法接收卫星信号从而无法实现。

CAN调谐器有限的接收性能增加了陡壁效应。与领先的CAN调谐器相比,Xceive硅调谐器的灵敏度具有3dBm的优势,从而减轻了陡壁效应,从而可以安装在距离数字发射机更远的地方,且没有图像劣化的现象。实际上,配有Xceive的电视机可以安装的距离是等效CAN调谐器的2倍。

假定电视机已经买好,且用户居住在传统CAN调谐器的接受范围以外,但位于Xceive调谐器的附加覆盖范围之内。其差别在于,如今用户可以在自己的数字家庭中利用买好的电视机欣赏节目,要么就得承受麻烦的退货之苦。

这就是电视制造商所面临的即刻挑战,因为有线电视和卫星电视接入都是无法保证的。为了确保数字电视的成功,硅调谐器就必须能够在更大的覆盖范围内捕获数字信号。

上述的问题无论对于模拟还是数字都是如此。因为即使等效的CAN调谐器能够接收到信号,但Xceive硅调谐器所具有的3dBm的信号质量优势也要比CAN优越。所观看的图像将会更加清晰,鲜活,并具有更好的色彩,具有较少的重影。

CAN和硅调谐器的案例比较

Xceive硅调谐器目前已经在欧洲,亚洲和美国的一些世界上最具挑战性的应用环境中经历了现场性能验证。最新的验证都证明Xceive的硅调谐器性能都优于领先的CAN调谐器,而且还更具健壮性。最简单的验证方法是利用过调制和载波锁定。

两块完全一样的一流电视机板被用来进行并排比较。一块使用了Xceive的硅调谐器,而另一块则使用了公司下属的调谐器部门的CAN调谐器。对板子进行比较时,使用了一个能导致最大失真的过调制信号,所显现的结果是水平视频稳定性失真,导致根本无法观看。同样,使用硅调谐器方案时,通过一样的后端MPEG和视频处理器引擎,则可以接收信号并能显示同样的信号。结果是通过硅调谐器的图像即健壮,实心且稳定。比较证明了相对于CAN调谐器,硅调谐器可以处理更高的过调制信号(如过调制可以大于140%,而CAN最大为125%)。

另一些例子还证明硅调谐器还具有其他方面的优异性能,包括具有1-2dB更好的ATSC/NTSC共频道性能,更好的频道搜索性能等。由于具有较少的现场问题,灵巧的硅调谐器正在成为优选的解决方案。

 

 

 

 

                          浅谈电视机电子调谐器的原理、分类与维修

本文从维修工作者的角度,简述电视机电子调谐器的原理。电子调谐器有选台板调谐、电压合成器(VS)调谐、频率合成器(FS)调谐等三类。其中将重点讨论频率合成式(FS)调谐系统。考虑到在实际维修工作中,对判断真正属于调谐器损坏时,多为整体调换,不拆修内部电路的一级维修方法,所以本文对调谐器内电路及故障的维修不作讨论,把着眼点放在调谐器与外部电路的认识及外部电压供给与信号传递的正误,以便准确判断电子调谐器的好坏。
  一、电子调谐器的基本原理
  电子调谐器的原理比较简单,即用可调的本机振荡频率(fL)与欲接收的电视信号的高频信号(fG)混频,相减后得到一个新的电视中频信号(IF),这一信号中包含有电视图像中频信号和伴音中频信号等。当然,仅仅变频还不够,由于电子调谐器处于电视机接收机的最前端,其处理信号的质量关系整体图像、伴音还原的逼真与稳定,为此,必须设置相关的高频增益自动控制电路(RFAGC)和频率自动调整电路(AFC)。以下介绍基本原理中的几个要点,以期对电子调谐器有一个基本的了解。
  ⒈电子调谐器中最基本的电路是一个混频器
  由图1可见,电视信号经天线插孔送入调谐器内的高频放大电路,经放大的信号(fG)被送到混频器。这时,由本机振荡器产生的本振频率信号(fL)也送到混频器,在混频器中本振频率与外来高频信号相减,得到新的中频信号。

图1

 

  例如,接收VHF(低段)二频道节目:高频信号频率为56.5~64.5MHz,图像信号为57.75MHz,本振频率为95.75MHz,混频后为:95.75MHz-57.75MHz=38MHz,38MHz即为新图像中频信号的中心频率。
  ⒉调谐电台的实质就是改变本机振荡频率
  由图2可见,本机振荡电路即是机器内部的一个可调的频率发生器,在LC振荡回路中,改变电容器C的容量,即可改变振荡频率,电容量减小频率升高,电容量增大,频率降低。在电子调谐器中,一般利用变容二极管结电容随所加电压的大小而改变的特性,来改变频率。图中RD两端加30VDC电压,D点滑动即可取得0~30V的BT电压,就可找到某一个频道的调谐点电压值。

图2

 

  ⒊变换波段和频道就是可跳跃式改变本振频率
  BT电压与调谐我国电视广播波段频道的关系,如图3所示。
  由图3可以看出,我国的电视共设有57个频道,且分布在三个波段中,如2频道在VHF(L)段,8频道在VHF(H)段,13~57频道在UHF段。还可以看出每一个频道的本振频率一定与BT电压斜线上某一点相对应。所以说,选择频道就是给选择波段电路供电使其工作起来,并使BT电压工作在某一点,供调谐器BT端。

图3

 

  波段转换与频道变换的电路原理如图4所示。

图4

 

  波段转换开关K的转换将V+分别接通Ⅰ、Ⅲ或U波段工作电压(二极管的导通,可改变线圈接入电路的多少),使接收范围在相应的选择波段中。频道的变换,即在相应的波段内,BT电压由小到大的升高即可改变频道。开关K与电位器RD的配合使用就可随意调谐到某一频道了。

  ⒋RFAGC及AFT控制使调谐器与中频电路构成闭环控制
  由图5可见,从混频器输出的中频信号(IF),经滤波器滤波,去除(fL-fG)以外的无用频率,并得到适合的中频曲线(图像、伴音、彩色副载频率、频点、宽带及峰值),进入中频信号处理电路。中频信号处理电路,多为一块专用集成电路,在主板上紧跟在调谐器后,也有的是一块独立的单元插板。在单片机心中,中频IC被集成在单片IC中。在中频IC中主要包含有图像中频检波电路、RFAGC及AFT电压形成等电路。检波可得到图像视频信号。这个视频信号的质量、信号的频点、频带、峰值等是以后单元电路正常工作的保证条件,也是前电路工作的结果。所以中频IC电路无一例外地要设两个支路,一个是RFAGC电压形成电路,取视频信号,形成对调谐器高放电路增益控制的电压——RFAGC电压;另一个是AFC电压形成电路,取中频载频信号,通过与外电路、AFC线圈等组成频偏鉴相电路,使中频频偏变成AFC电压。AFC电压送入调谐器,改变本振频率,调整中频频率。这个通路中设有AFC开关,在必要时可停止其反馈作用

图5


二、电子调谐系统的类型
  这里使用了电子调谐系统这样一个概念,因为现在电子调谐器大部分仍是设计成一个独立的部件,但是,应用时只靠调谐器本体,不能独立完成调谐的任务。所以只有把调谐、搜索、自动记忆等功能放在组成的系统中理解,才能更好地理解原理,把握故障现象的来龙去脉,减少维修盲目性。
  不同类型的电子调谐系统,其原理是相同的,唯有频道调谐电压(BT)取得和供给的方法不同。按BT电压取得和供给的方法,可将电子调谐系统分为三个类型:即选台板调节设定电压法、电压合成器(VS)、频率合成器(VS)。
  1.选台板调节设定电压法
  这种电路在彩电没有引进微电脑技术前被广泛采用,电子调谐器作为独立部件与选台板及图像中频处理单元反馈的RFAGC、AFT控制电压,构成调谐系统。选台板结构形式有数十种,有的还设有晶体管或IC电路作隔离或逻辑组合电路,但基本作用是相同的。本机振荡的BT电压都是由选台板上的开关置位和BT电压电位器调节位置记忆的。电路原理如图6所

示。

图6

 

  工作过程:电子调谐器接入天线,置AFT于OFF的位置,接通K1开关,拨动SW1于Ⅰ或Ⅲ或U任一波段上,调节RD,A点电压为0至32V电压中一点,当收到某频道节目时,A点电压即为BT电压。此时SW1及RD的机械位置就记忆下了波段电压和BT调谐电压。其他频道节目也按此法可存于其他开关组中。收视时,转按K1……Kn开关即可转换频道。调好后,置AFT开关于ON,整个调谐系统就工作于自动状态了。
  维修要点屏幕噪点很大而收不到台,且确定调谐器IF端至中端IC输入端通道正常时,应考虑调谐器系统故障。这时,首要问题是分清故障出在调谐器本身,还是外电路。检测调谐器BL、BH、BU端是否能随欲收频段加电压,且符合要求。BT端电压能否随RD电位器平滑稳定的改变(0~32V)。上述检查完全正常,故障依旧,可考虑是调谐器本身故障,能接收电视,但画面噪点很大或画面很硬无层次,可考虑RFAGC电路故障,应检查电路中的电阻(分压器)、电位器、电容器等元件。此外,对于老机器还应特别检查AFC调谐线圈的谐振频率是否正常。
2.电压合成器(VS)调谐系统
  这种调谐系统由调谐器和微电脑(MPU)控制电路(MPU)(含记忆电路)组成。波段转换电压,即BT电压(严格讲是微电脑产生的对应BT电压的BTDAC脉冲电压)是由于人工手动调谐频道或指令自动搜索频道时由微电脑MPU产生的,并写入(记忆)不挥发存储器中的。记忆时可以做到为每一个频道赋予一个节目号。转换节目时,由存储器读出BTDAC脉冲电压数据送到MPU,由BT端输出。BTDAC宽窄脉冲,再通过一个晶体管和RC电路即可得DC的BT电压了,在这个系统中,BT电压等频道调谐数据是收视调谐电视时存入存储器中的。整个系统如图7所示。


  线路工作过程:
  ⑴手动调谐时
  .用遥控器或本机上的按键输入命令到MPU。
  .MPU的BI和BO输出高或低电位电压给波段开关集成电路IC103,根据IC输入端电位逻辑组合,相应输出端为+12V电压供调谐器,使之工作在相应波段上。
  .MPU的BT端输出DAC调宽的脉冲,经Q1、RC电路转换成DC电压,送调谐器BT输入端,即可选择欲收节目。
  .上述两项调节电压及节目存储数据即可写入(记忆)在不挥发存储器IC102中。
  .电子调谐器IF端输出图像中频信号,经滤波器进入图像中频信号处理单元,该单元输出RFAGC、AFT控制信号,反馈到调谐器相应的端子。
  ⑵自动搜索调节
  .以遥控器命令自动搜索。
  .MPU收到命令后,MPU首先令波段开关IC103输出BVL电压,使调谐器工作于VHF(L)波段,BT电压变化上升,直到接收到第一个频道节目,此时中频电路出现电视信号,这信号中的电视同步信号反馈输入到MPU中。
  .MPU接到视频同步信号后,停止搜索,令存储器记忆下数据,并依次建立节目号。
  .MPU继续搜索,重复上述步骤,直至V段和U段将在播电视台信号全部调谐并依次设定节目号,记忆存储完毕。
  维修要点 根据经验,怀疑调谐器故障时,首先要检测BVL、BVH、BU端电压是否正常、受控,不正常时应检查波段开关IC电路、微电脑电路(MPU),对MPU电路要查的是它的基本工作条件(+5V电源、接地、复位脉冲、晶振电路)及相应波段转换电压是否正常。MPU正常,BT输出应该正常,则要查32V电源供给及Q1、RC电路,并确认调谐器BT端电压正常。AFT电压一般通过AFT开关IC,开关动作控制是根据需要由MPU输出控制信号的。自动搜索调台时,当出现稳不住台不能记忆的故障现象时,可着重检查反馈到MPU的视频同步信号是否到位。对涉及MPU的故障现象要重点检查外围电路,因为MPU芯片损坏的概率是非常低的。
3.频率合成器(SF)调谐系统
  频率合成器的高频放大电路、混频器、本机振荡电路与电压合成器在结构上是基本相同的,但调谐原理完全不同,前者是在手动或自动搜索调谐接收电视频道时,将收到电视频道信号时的微电脑表现的波段转换电压及BT电压数据写入存储器中,再次开启这一频道时,微电脑把这些数据从存储器中读出来,转换本振电路的波段和频道。后者是在制造生产微电脑(MPU)时,已经将电视机销售和使用该机的国家和地区广播的电视制式及每个频道数据做在里面了。频道调谐数据是以反映本振频率的分离比例的数据以二进制数存在MPU中的。在开机选择频道时,只要设定好使用国家、地区或电视制式,直接选择频道,就可调出数据,自动完成调谐。也可以以自动搜索方式调取数据。这种调谐器特别适合电视节目频道特别多的地区及在具有高频画中画功能的电视机中采用。频率合成器调谐器的组成与工作原理

,如图8所示。



  由图8可以看出,频率合成器调谐器的上半部分(图中阴影部分)与电压合成器的调谐器基本相同,即由高频放大电路、本机振荡电路、混频电路和中频输出电路组成,本机振荡电路也需要BVL、BVH、BU电压做波段转换工作电压。BT电压的大小控制本振频率的高低,改变BT电压即可改变接收频道。不同的是BT电压产生的方法不同,在电压合成器中BT电压由微电脑记忆输出BTDAC脉冲电压合成BT电压。
  在频率合成器调谐器中BT电压由PLL电路(锁相环电路)的比较器电路产生,见图8中PLL框图。锁相环电路是能使受控振荡器频率和相位均与输入信号保持确定关系的闭环电子电路。从两个框图(阴影和PLL)看出,调谐器中的本机振荡电路,也是PLL电路的受控振荡电路,比较器输出的电压即本机振荡电路的控制电压(BT电压)。比较器有两个输入端,一个是PLL电路自身的由基准振荡器(OSC)产生4MHz频率经128分频后得到31.25kHz频率;另一个频率是调谐器本振频率经预频率倍减器,分频后取得的新频率。由此可见,这个频率控制着比较器输出电压(BT),而这个频率又是由本振频率和分频数决定的,这里本振频率是要得到的目标,由此说来,分频数是决定的因素,分频数是由调谐微电脑(MPU)送来的频率分频比率数据决定。这个数据由19位2进制数构成,前4位为波段工作数据,中间10位为分频比率M数据,后5位为分频比率S细调数据。维修要点当出现无图像与伴音故障现象时,如果屏幕噪点很大,且遥控器可以正常操作,可以怀疑调谐器系统故障,但这时应首先检查收视调节情况及调谐器接脚电压和信号供给情况。前项指收视国家制式设置,声音制式设置等;后项指:①供电电压,即+9V、+5V、+30V(注意BVL、BVH、BU脚无供电);②I2C连接情况,有的机型是三线,有的机型是两线,有的接线之间有隔离器件。其次应检查微电脑电路,涉及的电路有:①存储器工作状态判断;②AFC反馈信号达到MPU;③视频同步信号(知晓收到信号)到达MPU。上述检查全都正常,才可判断调谐器本体故障,予以调换。

2.电压合成器(VS)调谐系统
  这种调谐系统由调谐器和微电脑(MPU)控制电路(MPU)(含记忆电路)组成。波段转换电压,即BT电压(严格讲是微电脑产生的对应BT电压的BTDAC脉冲电压)是由于人工手动调谐频道或指令自动搜索频道时由微电脑MPU产生的,并写入(记忆)不挥发存储器中的。记忆时可以做到为每一个频道赋予一个节目号。转换节目时,由存储器读出BTDAC脉冲电压数据送到MPU,由BT端输出。BTDAC宽窄脉冲,再通过一个晶体管和RC电路即可得DC的BT电压了,在这个系统中,BT电压等频道调谐数据是收视调谐电视时存入存储器中的。整个系统如图7所示。

 


  线路工作过程:
  ⑴手动调谐时
  .用遥控器或本机上的按键输入命令到MPU。
  .MPU的BI和BO输出高或低电位电压给波段开关集成电路IC103,根据IC输入端电位逻辑组合,相应输出端为+12V电压供调谐器,使之工作在相应波段上。
  .MPU的BT端输出DAC调宽的脉冲,经Q1、RC电路转换成DC电压,送调谐器BT输入端,即可选择欲收节目。
  .上述两项调节电压及节目存储数据即可写入(记忆)在不挥发存储器IC102中。
  .电子调谐器IF端输出图像中频信号,经滤波器进入图像中频信号处理单元,该单元输出RFAGC、AFT控制信号,反馈到调谐器相应的端子。
  ⑵自动搜索调节
  .以遥控器命令自动搜索。
  .MPU收到命令后,MPU首先令波段开关IC103输出BVL电压,使调谐器工作于VHF(L)波段,BT电压变化上升,直到接收到第一个频道节目,此时中频电路出现电视信号,这信号中的电视同步信号反馈输入到MPU中。
  .MPU接到视频同步信号后,停止搜索,令存储器记忆下数据,并依次建立节目号。
  .MPU继续搜索,重复上述步骤,直至V段和U段将在播电视台信号全部调谐并依次设定节目号,记忆存储完毕。
  维修要点 根据经验,怀疑调谐器故障时,首先要检测BVL、BVH、BU端电压是否正常、受控,不正常时应检查波段开关IC电路、微电脑电路(MPU),对MPU电路要查的是它的基本工作条件(+5V电源、接地、复位脉冲、晶振电路)及相应波段转换电压是否正常。MPU正常,BT输出应该正常,则要查32V电源供给及Q1、RC电路,并确认调谐器BT端电压正常。AFT电压一般通过AFT开关IC,开关动作控制是根据需要由MPU输出控制信号的。自动搜索调台时,当出现稳不住台不能记忆的故障现象时,可着重检查反馈到MPU的视频同步信号是否到位。对涉及MPU的故障现象要重点检查外围电路,因为MPU芯片损坏的概率是非常低的。
3.频率合成器(SF)调谐系统
  频率合成器的高频放大电路、混频器、本机振荡电路与电压合成器在结构上是基本相同的,但调谐原理完全不同,前者是在手动或自动搜索调谐接收电视频道时,将收到电视频道信号时的微电脑表现的波段转换电压及BT电压数据写入存储器中,再次开启这一频道时,微电脑把这些数据从存储器中读出来,转换本振电路的波段和频道。后者是在制造生产微电脑(MPU)时,已经将电视机销售和使用该机的国家和地区广播的电视制式及每个频道数据做在里面了。频道调谐数据是以反映本振频率的分离比例的数据以二进制数存在MPU中的。在开机选择频道时,只要设定好使用国家、地区或电视制式,直接选择频道,就可调出数据,自动完成调谐。也可以以自动搜索方式调取数据。这种调谐器特别适合电视节目频道特别多的地区及在具有高频画中画功能的电视机中采用。频率合成器调谐器的组成与工作原理,如图8所示。



  由图8可以看出,频率合成器调谐器的上半部分(图中阴影部分)与电压合成器的调谐器基本相同,即由高频放大电路、本机振荡电路、混频电路和中频输出电路组成,本机振荡电路也需要BVL、BVH、BU电压做波段转换工作电压。BT电压的大小控制本振频率的高低,改变BT电压即可改变接收频道。不同的是BT电压产生的方法不同,在电压合成器中BT电压由微电脑记忆输出BTDAC脉冲电压合成BT电压。
  在频率合成器调谐器中BT电压由PLL电路(锁相环电路)的比较器电路产生,见图8中PLL框图。锁相环电路是能使受控振荡器频率和相位均与输入信号保持确定关系的闭环电子电路。从两个框图(阴影和PLL)看出,调谐器中的本机振荡电路,也是PLL电路的受控振荡电路,比较器输出的电压即本机振荡电路的控制电压(BT电压)。比较器有两个输入端,一个是PLL电路自身的由基准振荡器(OSC)产生4MHz频率经128分频后得到31.25kHz频率;另一个频率是调谐器本振频率经预频率倍减器,分频后取得的新频率。由此可见,这个频率控制着比较器输出电压(BT),而这个频率又是由本振频率和分频数决定的,这里本振频率是要得到的目标,由此说来,分频数是决定的因素,分频数是由调谐微电脑(MPU)送来的频率分频比率数据决定。这个数据由19位2进制数构成,前4位为波段工作数据,中间10位为分频比率M数据,后5位为分频比率S细调数据。维修要点当出现无图像与伴音故障现象时,如果屏幕噪点很大,且遥控器可以正常操作,可以怀疑调谐器系统故障,但这时应首先检查收视调节情况及调谐器接脚电压和信号供给情况。前项指收视国家制式设置,声音制式设置等;后项指:①供电电压,即+9V、+5V、+30V(注意BVL、BVH、BU脚无供电);②I2C连接情况,有的机型是三线,有的机型是两线,有的接线之间有隔离器件。其次应检查微电脑电路,涉及的电路有:①存储器工作状态判断;②AFC反馈信号达到MPU;③视频同步信号(知晓收到信号)到达MPU。上述检查全都正常,才可判断调谐器本体故障,予以调换。

 

 

 

如何衡量调谐器的技术指标,并挑选合适的调谐器?

 

受访人:ClausMuschallik博士
电视接收系统支持部调谐器系统主管
英飞凌科技亚太公司

您认为对于一个调谐器而言,最重要的技术指标是什么?

信号进入电视或机顶盒(STB)时,首先要经过的就是射频调谐器。调谐器接收射频信号,然后进行一些初期的处理,以便传送原始的视、音频输出。射频调谐器的性能受到许多参数指标的影响,下面我们将逐个进行讨论。


调谐器会选择需要的频道,同时过滤掉所有邻近和不需要的频道。传统的混频器振荡器锁相环(MOPLL)CAN调谐器利用许多外置的分立无源器件(包括感应的空气线圈),建构复杂的射频追踪滤波器。滤波过程通常还需要一个外部IF SAW滤波器。而另一方面,硅调谐器则将传统的CAN调谐器通过外围器件实现的许多功能都集成在一个硅芯片上,因此,相比于传统的CAN调谐器设计,减少了200多个外部无源器件,这些器件大约占到总体设计的体积的90%。

基于上述原因,硅调谐器比传统CAN调谐器具有更小的外形尺寸,在某些情况下,节省空间可达90%以上(尺寸分别为28cm3和小于0.5cm3)。

射频调谐器和解调器(功能链上的下一个模块)之间的接口也是重要的影响因素,即所谓的图像抑制。例如一个IF接口将会遭遇图像频率问题,从而干扰IQ接口。英飞凌科技的OMNITUNE TUA 9001硅调谐器是一种直接转换调谐器,它利用IQ接口替代了IF接口,因为这样就可以避免图像频率问题。

与传统CAN调谐器相比较,硅调谐器线性性能表现欠佳。CAN调谐器在需要的信道中交叉调制不需要的信道方面表现出更好的处理能力。为了提升线性性能,硅调谐器对功耗进行折衷,因此,为了实现类似于CAN调谐器的线性性能,硅调谐器往往会耗费较高的功率。

调谐器的另一项重要任务,是将通过天线接收到的微弱信号进行放大,同时尽可能不对噪声放大。这里主要参数是噪声系数。 MOPLL CAN调谐器的噪声系数最高可达7dB,当加入一个低噪声放大器(LNA)后,可以改善到3dB。英飞凌的TUA 9001 硅调谐器,采用BGA 728 LNA,成功将总噪声系数降低到仅为2.5dB,相比于MOPLLCAN调谐器,这是一个很大的突破。最后,射频调谐器还必须执行一个任务,即将射频信号变频为低频信号。在这个转换中,将会引发额外的噪声,即相位噪声。TUA 9001在-91dBc/Hz @1kHz时,有一个相位噪声基准,该指标比传统的CAN调谐器严格至少10dB。

如何选择最合适的调谐器,对此您有些什么建议提供给设计工程师们?

在选择最适合的射频调谐器时,工程师需要考虑一些决定性因素,包括:成本、功耗、线性度、灵敏度性能、外形尺寸,以及对多种标准的支持,每个因素的重要性,将取决于具体应用。举例来说,在手机应用中,要求更小的外形尺寸;而对于标准大屏幕液晶电视应用而言,则要求更好的灵敏度和更低的功耗。

您认为将来传统的铁壳调谐器会完全被硅芯片调谐器所取代吗?

在传统CAN调谐器和新兴的硅调谐器技术之间,性能和成本的差距正逐渐减小。因此,对于“硅芯片调谐器将取代所有传统的CAN调谐器”这个问题,其重点不是“是否”,而是“何时” 。这个过渡其实早在固定应用和大部分移动应用的纯数字化时就已经开始。对于硅调谐器来说最后的挑战就是,CAN调谐器大量存在于目前固定的混合应用中,硅调谐器必须逐渐进行替换。

 

 

硅调谐器技术分析

一般通过电信号近距离传递信息,可以直接传送基带信号,但远距离时必须把基带信号调制到射频信号上,即把低频的信号频谱搬移到高频频谱上。而接收端又必须从调制的信号中解调出基带信号,也就是从高频信号上把有用信号搬移到低频。同时接收端往往会收到许多信号,我们还需选择自己需要的信号。这个完成选择需要的信号和信号频谱向低搬移的器件就是调谐器(在模拟电视时代,调谐器通常用铁盒封装,也称高频头)。

调谐器应用广泛,它可以传送视频、声音、数据等等信息。在种类繁多、形状各异的调谐器中,最常见的、也是本文要讨论的就是传送视频内容的调谐器(以下“调谐器”就特指这类调谐器)。

随着北京奥运会临近和地面数字电视节目的热播,USB电视棒在国内热销起来。之所以一个小小的USB电视棒就能接收射频电视信号,这要归功于硅调谐器技术的成熟。近几年半导体工艺技术和IC设计技术发展很快,这就促成了硅调谐器技术不断更新换代,形成了硅调谐器多种技术并存、多个半导体国际大厂参与竞争的局面。热起来的硅调谐器技术就是本文关注的焦点。

2 调谐器介绍

2.1 调谐器分类

接收调制视频的射频信号的电子产品有许多种类,如卫星机顶盒、有线机顶盒、电视机、手机电视、电脑电视卡、PCMCIA电视卡、USB电视棒等等。这些电子产品根据其特点使用了多种多样的调谐器。这些调谐器可以从以下几个角度去分类:

从接收信号角度调谐器分为模拟、数字、数模一体化三种,其中有些调谐器还可直接输出基带信号。而从接收信号的制式上看,模拟信号可以做到全制式接收,数字信号接收按地区分为DVB、ATSC、ISDB、DMB等。

从信号传输的网络不同,可区分为卫星调谐器、有线系统调谐器、地面广播调谐器及手机调谐器等。如在欧洲有线网络用DVB-C、地面广播用DVB-T、卫星广播用DVB-S、手持设备用DVB-H等等。

从调谐器处理信号的技术分为模拟和数字两种,传统的铁盒调谐器基本是采用模拟技术,而硅调谐器则是采用数字技术。

从调谐器电路架构方面,可分为下列几类:单转换中频输出、单转换低中频输出、单转换零中频输出、双转换中频输出、双转换低中频输出、及双转换零中频输出等等。

从调谐器改变调谐频率的方式可分为电压合成和频率合成两种。

2.2 调谐器基本工作原理

电路最简单的调谐器是单转换中频输出调谐器。其基本组成包括混频器、振荡器、锁相环(MOPLL)和高频放大器等。高频放大器具有自动增益控制(AGC)功能,跟踪滤波器是一个中心频率可调的带通滤波器。中频滤波器是一个具有特殊传输特性的带通滤波器,一般为声表面波滤波器(SAWF)。单转换中频输出调谐器电路架构如图一所示:

射频电视信号进入调谐器的高频放大器进行放大,其增益由AGC电路自动控制,再由跟踪滤波器将镜像信号去除,利用混频器和本地振荡器混出中频信号,最后经由中频滤波器虑除杂波、选择出想要的频道并进一步调整通带特性,完成调谐器的功能。

2.3铁盒调谐器现状

目前最普及的电视机还是模拟电视,这类电视机使用的都是铁盒调谐器,其基本功能就是选台和混频,属于单转换中频输出架构。

铁盒调谐器大多采用调谐器专用IC和许多个分立器件组成。其主芯片采用双极(Bipolar)工艺,具有成本极低的优势。由于调谐器处理的是几百MHz的高频信号,所以铁盒调谐器使用了微带和分布参数的器件。其中感应线圈需生产时由人工调节其分布参数。早期的铁盒调谐器都采用电压合成方式选台,目前大多采用频率合成方式,其优点是选台简单,调谐锁定,不易跑台。

经过多年的技术发展,传统铁盒调谐器设计和工艺技术十分成熟,尽管其电路器件多、结构复杂,生产调试难度很大。但是目前其成本十分低廉,只要不到10元人民币,这就是使其在竞争十分激烈的模拟电视机市场占有绝对优势,根本无法被硅调谐器取代。但其肯定会随着模拟电视在世界各国停播,逐被硅调谐器取代。

2.4 调谐器的几个关键技术指标

调谐器作为一个电子产品,有几个重要的电性能指标:

动态范围:动态范围指调谐器能接收的输入信号强度的范围。地面电视广播对动态范围的要求最大,约为60~70dB,有线传播方式约30~40dB,卫星传播方式动态范围则要求最小。

噪声指数:也叫噪声系数,就是系统输入输出前后信噪比的比值,也就是输出信号的信噪比比上输入信号的信噪比。它决定了调谐器最小可接收的信号强度,或称为接收灵敏度。目前数字地面电视广播的噪声指数要求不得高于7dB,而有线系统的噪声指数则小于10dB就可以了。

镜像抑制比:就是滤除镜像频道信号的能力。混频器的特点决定了比想要频道频率高或低两倍中频的频道也会输出到后面的中频滤波器,这就会对想要的频道产生干扰。因此,必须在混波器前加一个跟踪滤波器(也称镜像抑制滤波器)来滤除镜像频道。通常调谐器镜像抑制必须达到50~60dB。

相位噪声:相位噪声定义为在该频率处1Hz带宽内的信号功率与信号总功率的比值。调谐器本振信号易受噪声杂波的干扰而产生抖动,即相位变化,这就是调谐器的相位噪声。因数字电视信号多采用正交调幅(QAM)及四相相移键控调制方式,相位噪声会直接影响到数字调谐器的输出信噪比。而模拟电视信号多采用调幅(AM)或调频(FM)就不易受相位噪声干扰。通常调谐器相位噪声必须达到50dB以上。

3 硅调谐器技术分析

3.1硅调谐器技术分析

采用先进的数字设计技术和硅半导体工艺,把原来铁盒调谐器中的大部分分立器件都集成到一颗硅芯片中,这就是硅调谐器。

目前硅调谐器技术发展迅速,已有应用于多种电子产品的硅调谐器面世。但其成本仍然偏高,市场售价是铁盒调谐器的3倍左右,这就限制了其取代铁盒调谐器的速度。只有在PCMCIA电视卡、USB电视棒等小型产品上硅调谐器充分发挥其体积小的优势,独树一帜。

随着硅调谐器设计技术的提高,其半导体制造工艺也在不断更新换代,其目的就是为了显著降低成本。第一代硅调谐器采用高频半导体领域普遍采用的SiGe工艺,但其成本昂贵。后来过度到BiCMOS工艺,但仍比铁盒调谐器采用的双极(Bipolar)工艺成本高。最新一代硅调谐器已可以采用普遍使用的CMOS工艺。这使得硅调谐器可以与采用同样COMS工艺的解调器、解码器、控制器等集成在一起,构成SoC单芯片,这就大大降低了系统成本。

硅调谐器采用数字处理技术,通过控制口编程就可改变其特性。这样硅调谐器很容易实现多电视接收标准。

硅调谐器市场目前是多种半导体制造工艺、多种技术架构、多个厂家多种产品并存的局面。针对不同领域的应用,不同技术架构发挥了各自的优点。常见的硅调谐器的电路架构及其特点见表一。


表一 硅调谐器电路架构比较

硅调谐器各种电路架构的优缺点会因不同厂商的独特技术而不同,因而不同厂商对不同电路架构会有不同的喜好。目前看零中频和复变混频架构最有发展前景。

3.2 常见硅调谐器

英飞凌公司(Infineon)已推出了TUA6041、TUA6045和TUA6039等硅调谐器芯片。下一代是以TUA8010 、TUS9090为代表的硅调谐器产品。

美信公司(Maxim)产品包括MAX2165、MAX3580、MAX3540和MAX3541等高度集成的单次变频电视调谐器。

Microtune的硅芯片调谐器产品包括:MT2060系列低功率数字调谐器以及MT2131和MT2063多标准、多模式硅调谐器芯片。

瑞科信公司(Xceive)推出了新一代高集成性硅调谐器XC5000和调谐器芯片模块SN5000。

恩智浦公司(NXP)硅调谐器有TDA18292HN、TDA18252HN、TDA18271、TDA18251HD、TDA18211HD等,涵盖了卫星、有线、地面、手持移动等多种应用。

Max-Linear公司推出了全球标准的硅调谐器MxL5005S,可用于机顶盒和移动接收。MxL7001则是适合ISDB-T标准的移动电视用硅调谐器芯片。

飞思卡尔(Freescale)推出了MC44S803单芯片硅调谐器

三星电子(Samsung)的硅调谐器S5M8602可以支持DVB-H/T,DAB-IP,ISDB-T以及T-DMB等多个国家的电视标准。

ST、TI等已有解调解码芯片的公司,已将硅调谐器与解调器、解码器、控制器等集成在一起,构成SoC单芯片,如ST公司的STB6100单芯片、TI公司的“Hollywood”手机电视芯片等。

3.3 硅调谐器典型应用

在众多硅调谐器方案中,本文选NXP最近推出的新型数模一体化硅调谐器TDA18271,简单介绍其在电脑电视卡上的应用实例。TDA18271不但兼容所有的模拟与数字电视标准(PAL、NTSC、SECAM、DVB-T、ISDB-T、ATSC、DVB-C),且TDA18271芯片本身可将中频信号送至数字中频解调器TDA8295,完成模拟电视解调,输出CVBS模拟电视信号,同时中频信号也送至信道解码器 TDA10048,解出数字电视TS流。具体应用框图见图二。

4铁盒调谐器与硅调谐器比较

虽然有些性能指标硅调谐器不及铁盒调谐器好,但硅调谐器也达到数字/模拟广播标准的要求。现阶段只有高成本是硅调谐器的主要缺点。铁盒调谐器和硅调谐器最主要的差别见表二。


表二 硅调谐器与铁盒调谐器比较

5 结语

数字电视广播在全世界范围内的普及为硅调谐器的发展提供了极好的机会,硅调谐器的小体积优点也为调谐器开辟了USB电视棒等新的应用领域。再过两年,随着硅调谐器的普及,其成本会与铁盒调谐器的成本差别相差无几,届时硅调谐器将会独霸天下。同时随着硅调谐器技术水平的提高和成本的降低,硅调谐器市场的竞争将会更加激烈,目前这种厂家多品种多的“混乱”局面将会改观。仅有的几款功能全、性能优、价格低的硅调谐器就能满足多种领域的需求。

参考文献

1. 赵坚勇编,数字电视技术,西安电子科技大学出版社,2005

2. 王周宏,基于PC的数字电视方案,电子产品世界,2007年8月

3.http://www.xceive.com/

4.http://www.maxim-ic.com/

5. http://www.nxp.com/

作者:康佳集团股份有限公司研究院 王周宏

作者简介

王周宏 男,1966年9月生,工程师。198?年毕业于西安交通大学信息与控制工程系无线电技术专业。一直从事CRT电视机、投影墙、背投电视等电子产品的整机方案和电路设计。

 

 

最热调谐器方案点评

在数字电视这个全球最大的蛋糕面前,很多半导体厂商、OEM厂商均使出浑身解数,想在或者已经在数字电视领域分得一杯羹。调谐器作为数字电视的接收入口,在卫星、地面、线缆和移动传播中都是数字电视中不可或缺的一个部分,全球的厂商包括NXP、Infineon、TI、Freescale、等都是各种硅调谐器、混合调谐器或者调谐器模块的主要供应商。Analog Device自从2006年收购Integrant Technologies后,成为了移动电视市场调谐器的主力供应商,其产品涵盖DVB-T/H、ISDB-T、T-DMB、和CMMB全线调谐器产品。

调谐器的发展从最初的分立器件构建的模块,到后来的双转换中频输出,此架构虽已朝向将调谐器 IC化的趋势,但其缺点是仍需要两个外挂的SAW滤波器,才能完成调谐器的功能,未能做到IC完全整合。Zero IF技术可以省掉第一SAW滤波器,而且第二SAW滤波器可被信道选择滤波器取代,故此架构适合于完全整合的硅调谐器. 目前的硅调谐器基本上全部是带有Zero IF的双转换调谐器或者带有Zero IF的单转换调谐器。硅调谐器会朝向小尺寸、低功耗和高集成度的要求发展来适应移动电视的需求。

继卫星、地面和线缆传输三大领域之后,移动电视将成为现在和未来各大厂商发力角逐的焦点,目前关于移动电视标准就有DVB-H/S、ISDB-T、T-DMB、MediaFLO、ATSCM/H和CMMB等很多种,让人眼花缭乱。不过,调谐器并不会应为标准的不同受到很大的影响,目前各种移动电视标准的频谱主要涉及到四个频段:VHF III(174-240MHz)、UHF(470-862MHz)、L1(1450-1492MHz)、L2(1660-1685MHz)。半导体厂商往往会设计出同时支持不同标准的调谐器来满足不同的需求。下面为您介绍来自不同供应商的各种不同类型、丰富多彩的调谐器产品。

考虑芯片尺寸、功耗和成本的因数,很多调谐器可能仅支持一种或者二种移动电视标准。来自的NXP的TDA18291HN 硅调谐器使用BiCMOS技术,在VHF III(174Mhz到230Mhz)和UHF(470Mhz到862Mhz)频段范围内对DVB-H标准进行调谐,内部集成LNA、正交混波器、信道滤波器、PLL和VCO。在DVB-T模式下功耗仅有150mW。5*5mm2的QFN 32引脚封装十分适合于移动设备比如手机、PDA、PND等。其他供应商的产品,比如Analog的ADMTV202、ADMTV340、ADMTV3010分别用于ISDB-T、CMMB和T-DMB应用;Infineon的TUA9001用于DVB-H/T;

事实上,绝大多数的调谐器都会面对多个移动电视标准的应用来满足不同地区对移动电视不同标准的需求,这样更方便OEM 厂商设计和生产。来自ADI的ADMTV102就是这样一个满足DVB-H/T、T-DMB、CMMB、DMB-TH多种移动、地面电视标准的调谐器。该器件覆盖了band-III、UHF、L-band,甚至还可以支持65~108Mhz的FM,在无需SAW滤波器的基础上集成LNA、Mixer、PLL和VCO,5*5mm2的QFN 32引脚封装的功耗仅有180mW。NXP的TDA18292HN超低功耗多频段硅调谐器则创纪录的支持DVB-T,DVB-H,DVB-SH,T-DMB和ISDB-T 标准以及VHF III,UHF,L1-band,L2-band和S-band等所有移动电视频带。5*5mm2的QFN 32引脚封装在DVB-H的模式下的功耗达到了惊人的20mW,让我们期待着NXP这颗多频段,多标准的硅调谐器上市吧!

由于调谐器在信号灵敏度、噪声指数以及AGC(自动增益控制)方面的要求较高,频率超过1Ghz的RF信号也带来了EMC的问题,这给OEM厂商设计带来一定的难度。更多的调谐器产品是结合解调器核心或者IC一起,作为一个SiP IC或者AFE 模块供应,较小的AFE模块甚至和一张SD卡一样可以直接通过SDIO接口来与后端的信源解码器(MPEG或H.26?解码器)IC相连。来自TI的HollywoodTM Solution DTV1000和DTV1001则是结合了调谐器和解调器功能,专门为移动电视设计的产品。DTV1000工作在UHF和L-band频率范围,适用于DVB-H标准,DTV1001符合ISDB-T标准。Infineon的OMNIVIATM TUS9090使用0.13umRF-CMOS工艺, 在VHF、UHF和L-bands频带支持DVB-T/H标准。Sharp公司在2008年底专门为中国移动电视市场开发一款VA3C5CZ933,在UHF470-798Mhz频段支持CMMB标准。具体信息如下所示:

移动电视将会在目前流行的任何一台手持设备上出现,从根本上颠覆传统的收视理念。这必须依靠半导体厂商在核心芯片上的高度集成和低功耗技术,调谐器显然也不会被排除在外。

供稿:派睿电子

 

 

文同時刊登於部落格當中,內有更多文章整理,歡迎前往觀看喔
前往部落格(http://www.wretch.cc/blog/tdnj&article_id=10008571) 觀看

在看過下面兩篇文章後,
相信大部分的人都已經對於需要哪種訊號來源 及如何調整好基本訊號來源有了基本的概念,
◎ 類比訊號、 數位訊號的基本概念(http://www.wretch.cc/blog/tdnj&article_id=9846832)
◎ 如何挑張好的電視卡產品? 訊號分接共享該如何弄清楚畫面?(http://www.wretch.cc/blog/tdnj&article_id=9484070)


接下來將以較簡單易懂的方式來說明 電視產品基本架構 及相關晶片入門介紹
以下為訊號自輸入TV tuner後解成影像、音效兩部份,然後送至Bridge後送到電腦的示意圖,

http://farm2.static.flickr.com/1109/1376159657_391c907cf6_o.jpg


接下來分為幾大主題來分別介紹市售產品在各階段所使用的晶片及方案,
大家日後在看到產品外觀上所使用的晶片,大致上就會比較有概念,也容易區分產品的定位,
今天要談的是電視卡上面的幾個重點主題如下:

1. TV Tuner (電視調諧器)
2. TV Decoder (電視影像解碼)
3. Audio Processor (音效處理)
4. Bridge (橋接器)
5. HW Encoders (硬壓晶片處理)


Ⅰ. 首先介紹 TV Tuner部分,TVTuner的功能是什麼呢?

Tuner主要是接收電視台發出的類比訊號後,將訊號由200~800MHz的高頻,降至36MHz左右的中頻,然後傳送至解調器(Demodulator),一般常見的TV Tuner外觀像是一個鐵殼裝置,其實裡面是由一些複雜的元件所組成,也就是我們稱的Can Tuner,而市面上常見的TV Tuner廠牌有:Philips、LG、TVision、TN、TCL等等等.....
Can Tuner的差異蠻大的,各個廠商的產品品質參差不齊,而TV Tuner因為負責處理高頻這部份的訊號,因此對於接收效果又是影響比較大的一環,因此選擇上最好選用Philips或是LG的TVTuner的電視卡表現上會較佳,

下圖外觀為鐵殼裝置的部份就是我們稱的Can Tuner:
http://farm2.static.flickr.com/1173/1377782514_edcc4de630_o.jpg

近幾年由於環保意識抬頭,Can Tuner由於含鉛,因此被拒於歐盟環評之外,因此漸漸的新一代的矽晶片調諧器(Silicon Tuner)快速崛起,推出的廠家主要是Philips(NXP)與Xceive為主,由於把複雜的元件線路都給晶片化,TV Tuner的尺寸也越做越小,也利於電視卡體積的微縮,而近年來矽晶片調諧器越做越佳,甚至部份能做到不輸給Can Tuner的情況下,價格也更平易近人,Tuner的種類分為純類比(或純數位)的Analogy(or Digital) TV tuner;或是數位+類比通吃型的TVtuner (Hybrid Tuner),
如對Tuner種類有疑問可參考◎ 類比訊號、 數位訊號的基本概念(http://www.wretch.cc/blog/tdnj&article_id=9846832) 一文末端有詳細說明,
下圖為Compro E800 電視卡上的Xceive XC3028 Hybrid Silicon tuner,由於體積較小,Tuner部分有特寫XD,

http://farm2.static.flickr.com/1344/1376877333_23af5f8c62_o.jpg


Ⅱ. 接下來則是TVDecoder (電視影像解碼)部分,TVDecoder 的功能是什麼?
TV Decoder主要功能為將由TV Tuner送出的影像訊號解開後,並且數位化,數位化之後才能進入電腦當中處理,
TV Decider有些人會稱之為Video Decoder,但稱之為videodecoder易與影片解碼的Video decoder搞混,
因此這邊稱之為TV Decoder是較洽當且不易混淆的一種說法。

TV Decoder這部份牽涉到電視卡最重要部份"電視畫質",因為類比訊號轉成數位訊號的過程就直接牽涉到影像的品質,目前市場上有9/10bits進行取樣的模式進行ADC註1(8bits因效果差,淘汰就不談了),照帳面上來看,取樣數量越高效果會越好,但實際上人眼無法分辨那麼細微的差異,因此9bits與10bits沒有什麼太大差異,此時取樣技術的高低就成了畫質的關鍵部份。一般情況認為Philips的AD技術要比Conexant要來的優秀,實際狀況中2388X系列10bits取樣與Philips9bits 取樣,效果相差不大。

另外以直覺性來說,越簡單的AD轉換過程(類比轉數位)可以達到最佳效果,但也有特例的狀況,像是M800所採用的Philips7133晶片註2,雖然本身就具有TV Decoder功能,具備AD轉換的能力,但是廠商仍然額外加了一顆NEC 3D Y/C晶片(uPD64083)這一顆同樣具備TV Decoder功能的晶片,以往玩音響的人都知道,多條線就多隻鬼來影響音質,為何到了電視卡的領域看似多道程序的步驟反而對畫質提昇有所幫助?
原因在於訊號經過NEC晶片時,將類比訊號經過3D Y/C訊號處理後畫質變的很優,但此時已將類比訊號轉成數位訊號,但由於Philips7133晶片本身也具備TV Decoder的能力,必須吃類比訊號(透過7133再轉成數位訊號),因此在NEC晶片將類比轉為數位後,又強制將已數位化的訊號轉回類比訊號讓7133晶片本身能夠接收,因此整個過程由NEC晶片(A/D轉換=>D/A轉換)再經由Philips7133 (A/D轉換)送到Bridge橋接晶片,而由於NEC晶片至Philips7133晶片組之間的傳輸是以s-video來傳輸(s-video本身為類比,但本身就是Y/C分離的訊號),因此中間對畫質所產生的影響非常小,而事實證明,M800在NEC晶片加入之下,的確將畫質推升至一個非常好的境界。

如對3D Y/C此名詞有疑問可參考

◎ Y/C 分離到底是什麼東西?(http://www.wretch.cc/blog/tdnj&article_id=5024584) 一文有解釋Y/C分離如何使畫面清晰
◎ 如何挑張好的電視卡產品? 訊號分接共享該如何弄清楚畫面?(http://www.wretch.cc/blog/tdnj&article_id=9484070) 一文末端有Y/C分離於影響電視畫質影響說明

註1: ADC即為 類比/數位轉換器;反之DAC則稱之為數位/類比轉換器
註2: Philips 7133晶片,本身即為一整合TV Decoder(電視影像解碼) / AudioProcessor(音效處理) / Bridge(橋接器)的晶片組

http://farm2.static.flickr.com/1420/1377515456_87f7965d5c_o.jpg

當然後續也有晶片廠將3D Y/C及其他功能一併整合進入一顆單晶片的解決方案,如Conexant 23418這顆晶片,
這顆晶片不但具備TV Dcoder及AudioProcessor,並且還具有3D Y/C功能及MPEG2HW Encoder(硬壓功能,後面會介紹)。
下圖為全球首張Conexant 23418單晶片整合的電視卡 Compro H900

http://farm2.static.flickr.com/1022/1377761350_31b53947ce_o.jpg

Ⅲ. Audio Processor (音效處理)部分,則是單純許多,Audio Processor的功能是什麼?
顧名思義,就是負責處理音效部分,大家常見的一些 Stereo(立體聲)/雙語等音效選項都是由Audio Processor負責,從TVTuner送出的訊號經由Audio Processor處理後成為數位化訊號送入Bridge(橋接器),就是大家熟知的PCI Audio(PCI音源),而目前很多晶片都整合了Audio Processor這部份的功能,如先前提到的Philips7133及Conexant 23418晶片都整合進去囉。


Ⅳ. Bridge(橋接晶片),望文申意即為橋樑的作用,而這座橋負責電視卡與主機板之間往來重責大任
在TV Decoder及AudioProcessor將數位化後的訊後丟給橋接晶片後,藉由橋接晶片把訊號傳給電腦做處理,
而電腦本身也可透過橋接晶片對電視卡做操控,這應該是整篇文章裡面最簡單瞭解的部份,簡單的說就是溝通橋樑,而橋接晶片也決定了電視產品的介面,像是PCI、PCIe、USB2.0、PCMCIA、Expresscard等介面,

http://farm2.static.flickr.com/1391/1377116721_38ca204400_o.jpg


到目前為止,電視卡的細部介紹到一個階段,等等!!?? 不是還有硬壓晶片要介紹嗎??
別緊張,硬壓晶片處理並不是電視卡當中必要的流程,而上面Ⅰ~Ⅳ的介紹則為電視卡構成的必要要素,而Ⅰ~Ⅳ所構成的電視卡,是透過軟體來做Encoder的,也就是我們稱的『軟壓卡』,那為何要加入硬壓的介紹,看官就請往下看囉。

Ⅴ. HW Encoders (硬壓晶片處理)
所謂的硬壓電視卡就是電視訊號到了Bridge(橋接晶片)時並沒有直接傳送給電腦而是先送到HW Encoder晶片做處理,軟壓跟硬壓有何不同? 這顆硬壓晶片其實就是一顆設計過的高速CPU IC,專門負責幫你做encoder的動作,而軟壓就是少了這部份的硬體設計,所以可以使用軟體經過電腦CPU來做encoder的動作,換個角度來說,現在主機的CPU都相當高速,也不一定非得上一顆MPEG1/2硬壓晶片才能夠壓MPEG2,電腦的CPU本身就足夠應付現行的MPEG1/2軟壓,也不會消耗太多CPU資源,畢竟大部分電腦CPU都是閒置狀態居多,所以這部份軟壓卡就相當有優勢,因為軟壓卡本身比較便宜,而現在這個時代CPU又夠快,當然舊電腦及有較多工需求的使用者會比較合適,因此多半定位於較高階的電視卡才會有把硬壓晶片安置上去,而現行的電腦對於Divx /Xvid / h.264這幾種Encoder還算屬於比較吃力的狀態,因此未來一年,相信會冒出不少打著Divx / Xvid / h.264 HW Encoder晶片的產品問世,相當直得期待。

下面介紹一些常見的硬壓晶片:
http://farm2.static.flickr.com/1437/1377881204_b50d1210a1_o.jpg

以上暫時告一個段落,簡單介紹電視產品基本架構及相關晶片入門介紹,如果有不瞭解的地方,也歡迎提出來大家討論喔:)

你可能感兴趣的:(工作,存储,audio,产品,BT,h.264)