杭电1007题

普通方法,超时了。

#include<iostream>
#include <iomanip>
#include<math.h>
#include<vector>
using namespace std;

class Point
{
public:
	double douX;
	double douY;
	Point():douX(0),douY(0)
	{
	}
	Point(double x, double y):douX(x),douY(y)
	{
	}
};

int main()
{
	int iPointNum;
	double dX, dY;
	while(cin >> iPointNum)
	{
		if(0 == iPointNum)
		{
			return 0;
		}
		else
		{
			vector<Point> vecPoint(iPointNum); 
			double douMinDistance = 0;
			double douDistance = 0;
			
			for(int i = 0; i < iPointNum; i++)
			{
				cin >> dX >> dY;
				Point p(dX, dY);
				vecPoint[i] = p;
			}//for_loop
			
			for(int j = 0; j < iPointNum; j++)
			{
				for(int k = j + 1; k < iPointNum; k++)
				{
					double douXDistence = fabs(vecPoint[k].douX - vecPoint[j].douX);
					double douYDistence = fabs(vecPoint[k].douY - vecPoint[j].douY);
					douDistance = sqrt(pow(douXDistence, 2) + pow(douYDistence, 2));
					if(douDistance < douMinDistance)
					{
						douMinDistance = douDistance;
					}
				}//for_loop
			}//for_loop
			
			cout << fixed << setprecision(2) << douMinDistance << endl;
			
		}//if_loop
		
	}//while_loop
	
	return 0;
}


模仿网上一个分治法,还是超时了。

#include<iostream>
#include <iomanip>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;


class Point
{
public:
	double douX;
	double douY;
	Point():douX(0),douY(0)
	{
	}
	Point(double x, double y):douX(x),douY(y)
	{
	}
};

double P2PDistance(Point pa, Point pb)
{
	double douXDistence = fabs(pa.douX - pb.douX);
	double douYDistence = fabs(pa.douY - pb.douY);
	double douDistance = sqrt(pow(douXDistence, 2) + pow(douYDistence, 2));
	return douDistance;
}

double MinDistance(double a, double b)
{
	return a < b ? a : b;
}

bool CompByX(Point pa, Point pb)
{
	if(pa.douX < pb.douX)
	{
		return true;
	}
	else
	{
		return false;
	}
}

bool CompByY(Point pa, Point pb)
{
	if(pa.douY < pb.douY)
	{
		return true;
	}
	else
	{
		return false;
	}
}

double GetMinDistance(int begin, int end, vector<Point>& vecPoint)
{
	if(begin == end)
	{
		return 0;
	}
	else if(begin + 1 == end)
	{
		return P2PDistance(vecPoint[begin], vecPoint[end]);
	}
	else if(begin + 2 == end)
	{
		double dist1 = P2PDistance(vecPoint[begin], vecPoint[begin+1]);
  	double dist2 = P2PDistance(vecPoint[begin+1], vecPoint[begin+2]);
  	double dist3 = P2PDistance(vecPoint[begin], vecPoint[begin+2]);
  	return MinDistance(MinDistance(dist1,dist2),dist3);
	}
	
	int mid = (begin + end)/2;
	int iMinDist = MinDistance( GetMinDistance(begin, mid, vecPoint), GetMinDistance(mid + 1, end, vecPoint) );     
  //vector里面的元素已经X排序
	
	vector<Point> vecPointX;
	for(int i = begin; i < end; i++)
	{
		if(fabs(vecPoint[i].douX - vecPoint[mid].douX) < iMinDist)
		{
			vecPointX.push_back(vecPoint[i]);                                                                
			//X距离小于iMinDist,有可能
		}
	}//for_loop                                                                 
	
	vector<Point> vecPointY;
	sort(vecPointX.begin(), vecPointX.end(), CompByY);
	mid = (vecPointX.size()) / 2;
	
	for(int i = 0; i < vecPointX.size(); i++)
	{
		if(fabs(vecPointX[i].douY - vecPointX[mid].douY) < iMinDist)
		{
			vecPointY.push_back(vecPointX[i]);                                                                
			//Y距离小于iMinDist,有可能
		}
	}//for_loop
	
	for(int i = 0; i < vecPointY.size(); i++)                                                                           
	//查看上述那些“可能”是否是会出现
	{
		double dist = P2PDistance(vecPointY[i], vecPointX[mid]);
		if(dist < iMinDist)
		{
			iMinDist = dist;
		}
	}//for_loop
	
	return iMinDist;
}

int main()
{
	int iPointNum;
	double dX, dY;
	while(cin >> iPointNum)
	{
		if(0 == iPointNum)
		{
			return 0;
		}
		else
		{
			vector<Point> vecPoint(iPointNum); 
			double douMinDistance = 0;
			
			for(int i = 0; i < iPointNum; i++)
			{
				cin >> dX >> dY;
				Point p(dX, dY);
				vecPoint[i] = p;
			}//for_loop
			
		 sort(vecPoint.begin(), vecPoint.end(), CompByX);                               
		 //对X进行排序,进入GetMinDistance使用
		 douMinDistance = GetMinDistance(0, vecPoint.size() - 1, vecPoint);
			
		 cout << fixed << setprecision(2) << douMinDistance << endl;
			
		}//if_loop
		
	}//while_loop
	
	return 0;
}


题目:点击打开链接    ----   最小套圈问题

参考答案: 点击打开链接        ----  分治法求解


传统观的分治法,是将一个大问题分解成同样的小问题求解。这个里面有点状况,不能完全套用传统的方法。将一堆点按X坐标排序后,找出某个基准点将这堆点分为左右两个集合,大问题(寻找这堆点的最小距离)就分解为找左右两个集合里面最小问题,还加一个特殊情况(可能是左边某点和右边某点的距离是最小的)。这个题就是看你怎么处理这个特殊情况了。

你可能感兴趣的:(杭电1007题)