蒙特卡洛算法

一、基本思想

       所求解问题是某随机事件A出现的概率(或者是某随机变量B的期望值)。通过某种“实验”的方法,得出A事件出现的频率,以此估计出A事件出现的概率(或者得到随机变量B的某些数字特征,得出B的期望值)。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。

        它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。(撒黄豆只是一个比喻。)

 

二、算法步骤

      (1)构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。
   (2)实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 建立各种估计量: 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。
  (3)建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量: 于是,在N次实验后,正品个数为: 显然,正品率p为: 不难看出,Ti为无偏估计。当然,还可以引入其它类型的估计,如最大似然估计,渐进有偏估计等。但是,在蒙特卡罗计算中,使用最多的是无偏估计。 用比较抽象的概率语言描述蒙特卡罗方法解题的手续如下:构造一个概率空间(W ,A,P),其中,W 是一个事件集合,A是集合W 的子集的s 体,P是在A上建立的某个概率测度;在这个概率空间中,选取一个随机变量q (w ),w Î W ,使得这个随机变量的期望值 正好是所要求的解Q ,然后用q (w )的简单子样的算术平均值作为Q 的近似值。

 

三、优缺点

     直接追踪粒子,物理思路清晰,易于理解。
  · 采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。
  · 不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。
  · MC程序结构清晰简单。
  · 研究人员采用MC方法编写程序来解决粒子输运问题,比较容易得到自己想得到的任意中间结果,应用灵活性强。
  · MC方法主要弱点是收敛速度较慢和误差的概率性质,其概率误差正比于,如果单纯以增大抽样粒子个数N来减小误差,就要增加很大的计算量。

      真的没弄懂,先黏贴点做个记录,慢慢补上。。。

 

参考:

http://blog.csdn.net/caotiancool/article/details/475338

http://blog.csdn.net/mmbl007/article/details/6204003

你可能感兴趣的:(蒙特卡洛算法)