- 【JS】执行时长(100分) |思路参考+代码解析(C++)
l939035548
JS算法数据结构c++
题目为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1秒,在保证GPU不空闲情况下,最少需要多长时间执行完成。题目输入第一个参数为GPU一次最多执行的任务个数,取值范围[1,10000]第二个参数为任务数组长度,取值范围[1,10000]第三个参数为任务数组,数字范围
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- 2021-06-07 Do What You Are Meant To Do
春生阁
Don’tgiveupontryingtofindbalanceinyourlife.Sticktoyourpriorities.Rememberwhat’smostimportanttoyouanddoeverythingyoucantoputyourselfinapositionwhereyoucanfocusonthosepriorities,ratherthanbeingpulledbyt
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- 【大模型】triton inference server
idiotyi
大模型自然语言处理语言模型人工智能
前言:tritoninferenceserver常用于大模型部署,可以采用http或GRPC调用,支持大部分的backend,单GPU、多GPU都可以支持,CPU也支持。本文主要是使用tritoninferenceserver部署大模型的简单流程示例。目录1.整体流程2.搭建本地仓库3.服务端代码4.启动服务5.客户端调用1.整体流程搭建模型仓库模型配置服务端调用代码docker启动服务客户端调用
- Upstage 将发布新一代 LLM “Solar Pro “预览版
吴脑的键客
人工智能人工智能
SolarPro是最智能的LLM,经过优化可在单GPU上运行,性能超过微软、Meta和谷歌等科技巨头的模型。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。该预览版作为开源模型免费提供API访问,
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- 大模型框架:vLLM
m0_37559973
大模型大模型通义千问Qwen
目录一、vLLM介绍二、安装vLLM2.1使用GPU进行安装2.2使用CPU进行安装2.3相关配置三、使用vLLM3.1离线推理3.2适配OpenAI-API的API服务一、vLLM介绍vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架。它利用了全新的注意力算法「PagedAttention」,提供易用、快速、便宜的LLM服务。二、安装vLLM2.1使用GPU进行安装vLLM是一个Py
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 1. 下载安装RKNN的docker镜像
jcfszxc
RKNN系列c++Rockchip
安装好docker:1.Docker的安装进入网盘,下载镜像文件:网盘链接:https://console.zbox.filez.com/l/I00fc3密码:rknn下载最新的版本,当前最新版本2.1.0,([[2024-09-01]]):下载路径:GPU-Group01的分享/RKNPU2SDK/2.1.0/release/rknn-toolkit2-2.1.0-cp38-docker.tar
- 【ShuQiHere】小白也能懂的 TensorFlow 和 PyTorch GPU 配置教程
ShuQiHere
tensorflowpytorch人工智能
【ShuQiHere】在深度学习中,GPU的使用对于加速模型训练至关重要。然而,对于许多刚刚入门的小白来说,如何在TensorFlow和PyTorch中指定使用GPU进行训练可能会感到困惑。在本文中,我将详细介绍如何在这两个主流的深度学习框架中指定使用GPU进行训练,并确保每一个步骤都简单易懂,跟着我的步骤来,你也能轻松上手!1.安装所需库首先,确保你已经安装了TensorFlow或PyTorch
- 项目实战 ---- 商用落地视频搜索系统(10)---后台搜索Cache优化
PhoenixAI8
AIPython商用视频搜索系统vectordbmilvusrediscache
目录背景技术实现策略视频预处理阶段的cache技术视频搜索阶段的cache技术技术实现预处理阶段cache策略实现逻辑代码运行结果问题及注意点搜索阶段cache策略实现系统配置层面逻辑低版本GPUCPU本项目的配置高版本描述goahead策略cache加载策略本项目配置应用层搜索参数的配置配置项本项目的实际配置背景但目前为止,视频搜索系统已经可以正常使用和运转。并且他是基于多策略搜索算法的,能够在
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- RTX 4090深度学习性能实测奉上!模型训练可提升60~80%
赋创小助手
服务器深度学习人工智能图像处理自动驾驶
近期,我们对RTX4090涡轮版进行了完整的整机测试,本篇文章将分别围绕单卡,4卡,8卡RTX4090性能测试结果展开分享,以全面评估其相比上代RTX30系列的性能优势。首先让我们一起看看本次测试的硬件配置。测试硬件配置简单介绍一下本次使用的平台为超微SYS-420GP-TNR,这款GPU系统针对AI和图形密集型工作负载的灵活设计,4U双处理器(第三代英特尔®至强®),双根GPU系统,最多10个P
- 深度学习的零碎知识点
csdn_now
深度学习人工智能
显卡内存什么是显卡内存简单来说就是,Windows会在物理显存/「专用GPU内存」不够用或只有集成显卡的情况下,将物理内存RAM当作GPU的虚拟显存/「共享GPU内存」来使用。什么是Windows「共享GPU内存」,它与VRAM有什么不同(sysgeek.cn)平常说的显卡内存就是【专用GPU内存】。如何查看内存大小Win10任务管理器中的"专用GPU内存"是怎么回事?“共享GPU内存”又是什么?
- GPU版pytorch安装
普通攻击往后拉
pythontips神经网络基础模型关键点
由于经常重装系统,导致电脑的环境需要经常重新配置,其中尤其是cudatorch比较难以安装,因此记录一下安装GPU版本torch的过程。1)安装CUDAtoolkit这个可以看做是N卡所有cuda计算的基础,一般都会随驱动的更新自动安装,但是不全,仍然需要安装toolkit,并不需要先看已有版本是哪个,反正下载完后会自动覆盖原有的cuda。下载网站两个:国内网站:只能下载最新的toolkit,但是
- 人工智能-GPU版本机器学习、深度学习模型安装
bw876720687
人工智能机器学习深度学习
背景1、在有Nvidia-GPU的情况下模型使用cuda加速计算,但是很有多模型的GPU和CPU版本安装方式不同,如何安装lgb\cat\xgb.2、为了让代码有普适性,如何自适应环境当中的设备进行CPU或者GPU的调整?解决方案问题一:安装GPU版本的LightGBMLightGBM默认不会安装GPU支持版,需要手动编译以启用GPU。以下是在Linux和Windows上编译GPU版本LightG
- 入门篇,带你了解CPU, GPU, TPU, NPU, DPU
今夕是何年,
视觉算法部署深度学习算法人工智能
目录CPU(中央处理器)GPU(图形处理器)TPU(张量处理单元)NPU(神经网络处理器)DPU(数据处理器)CPU(中央处理器)专业介绍:CPU是计算机系统的核心,负责执行操作系统和应用程序的指令。它由多个核心组成,每个核心可以独立执行任务。CPU的设计重点是处理复杂的逻辑运算和顺序任务,如分支预测、指令调度等。现代CPU通常包含多个层级的缓存(如L1、L2和L3缓存),以减少访问主存储器的延迟
- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- 鸿蒙(API 12 Beta6版)GPU加速引擎服务【自适应VRS】
移动开发技术栈
鸿蒙开发harmonyos华为openharmony鸿蒙鸿蒙系统VRS引擎
XEngineKit提供自适应VRS功能,其通过合理分配画面的计算资源,视觉无损降低渲染频次,使不同的渲染图像使用不同的渲染速率,能够有效提高渲染性能。接口说明以下接口为自适应VRS设置接口,如要使用更丰富的设置和查询接口。接口名描述constGLubyte*HMS_XEG_GetString(GLenumname)XEngineGLES扩展特性查询接口。GL_APICALLvoidGL_APIE
- 安装tensorflow2.5.0 发现 tensorflow 和 numba 两者对应Numpy版本冲突
GJK_
tensorflownumpy人工智能
问题:python3.8安装tensorflow2.5.0发现tensorflow和numba两者对应Numpy版本冲突tensorflow-gpu2.5.0requiresnumpy~=1.19.2numba0.58.1requiresnumpy=1.22解决方法:将numba降低版本为0.53pipinstallnumba==0.53再将numpy版本改为1.19.2pipinstallnum
- 本地部署大语言模型详细讲解
程序员小羊!
杂文语言模型人工智能自然语言处理
大家好,我是程序员小羊!前言:本地部署大语言模型(LLM,LargeLanguageModel)需要相应的硬件资源和技术栈支持,如GPU计算能力、大量内存、存储空间,以及模型部署框架。以下是如何在本地部署大语言模型的详细解释,包括选择模型、硬件需求、安装必要的软件和工具、下载和配置模型、以及优化运行性能的建议。一、前期准备1.硬件需求部署大语言模型的硬件要求主要取决于模型的大小和运行任务的复杂度。
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- ONNXRuntime与CUDA版本对应
zy_destiny
部署YOLOonnxruntimeonnX部署cudapython
onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。ONNXRuntimeC
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round