- 马斯克的Grok-3:技术突破与行业冲击的深度解析
♢.*
马斯克人工智能大模型xAIGrok3
一、技术架构与核心突破超大规模算力集群Grok-3基于xAI自研的Colossus超级计算机训练完成,搭载20万块英伟达H100GPU,累计消耗2亿GPU小时,算力投入是前代Grok-2的10倍48。这一规模远超行业平均水平,例如中国团队DeepSeek-V3的算力消耗仅为Grok-3的1/2634。技术挑战:团队在122天内完成首期10万块GPU部署,克服了散热、电力供应等工程难题1。思维链推理
- AI服务器散热黑科技:让芯片“冷静”提速
小深ai硬件分享
人工智能深度学习服务器
AI服务器为何需要散热黑科技在人工智能飞速发展的当下,AI服务器作为核心支撑,作用重大。从互联网智能推荐,到医疗疾病诊断辅助,从金融风险预测,到教育个性化学习,AI服务器广泛应用,为各类复杂人工智能应用提供强大算力。然而,AI服务器在运行时面临着严峻的散热挑战。随着人工智能技术的不断发展,对AI服务器的计算能力要求越来越高,这使得服务器的功率密度急剧增加。以GPT-4的训练为例,它需要大量的GPU
- FastGPT接入向量模型 M3E 和 重排模型 bge-reranker-large
福葫芦
M3EM3EFASTGPT
一、FastGPT接入向量模型M3E1.拉取m3e镜像#GPU模式启动,并把m3e加载到fastgpt同一个网络dockerpullregistry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api2.查看镜像dockerimages可以按照有一个名称为registry.cn-hangzhou.aliyuncs.com/fastgpt_do
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
魔王阿卡纳兹
大模型知识札记语言模型人工智能自然语言处理
KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度,具体体现在以下几个方面:内核级优化:KTransformers采用了高效的内核级优化技术,包括对Transformer模型中的关键操作进行优化。例如,通过使用Llama和Marlin等高效内核,显著提升了计算效率。通过IntelAMX指令集优化,KTransformers在CPU端实现了更高的
- Vulkan
hanpfei
Android图形系统
Android7.0添加了对Vulkan的支持,一个高性能3D图形的低开销跨平台API。像OpenGLES一样,Vulkan提供了在应用中创建高质量,实时图形的工具。Vulkan的优势包括CPU开销降低及支持SPIR-VBinaryIntermediate语言。片上系统生产商(SoCs)比如GPU独立硬件供应商(IHVs)可以为Android编写Vulkan驱动;OEMs简单地需要为特定的硬件集成
- 百度百舸 DeepSeek 一体机发布,支持昆仑芯 P800 单机 8 卡满血版开箱即用
百度智能云技术站
deepseek百度百舸专有云
在私有云环境中成功部署DeepSeek满血版并实现性能调优,并不是一件容易的事情。选择合适的GPU配置、安装相应的环境、成功部署上线业务、加速推理任务加速、支撑多用户并发……完成业务测试,成功融入生产业务中。为了帮助企业快速实现DeepSeek服务的落地,百度智能云推出「百度百舸DeepSeek一体机」。百度百舸DeepSeek一体机基于百度百舸平台打造,提供纯国产的算力组合,支持昆仑芯P800单
- GPU通信革命:跨平面网络效率提升300%的秘密武器
CodePatentMaster
人工智能深度学习机器学习自然语言处理微服务服务器AIGC
「无需CPU中转,多平面网络RDMA通信时延降低50%」——Deepseek专利CN118612157A一、技术解析:突破AI算力瓶颈的底层创新1.技术背景:终结多平面网络CPU中转困境传统多平面网络中,跨平面GPU通信必须经过CPU内存拷贝,导致两大痛点:20-30%的通信带宽浪费在CPU中转环节大规模集群训练时,网络拥塞引发训练任务停滞该专利通过构建GPU直连通道,实现跨平面网络的零拷贝通信,
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- QT+FFmpeg如何使用GPU加速解码?
bug菌¹
全栈Bug调优(实战版)qtffmpeg开发语言c++
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案1.确保FFmpeg和CUDA的支持2.正确选择硬件解码器设置硬件解码器3.初始化CUDA硬件设备4.硬件解码流程解码帧并处理硬件帧5.检查FF
- x86平台基于Qt+opengl优化ffmpeg软解码1080P视频渲染效率
zanglengyu
Qt上位机开发qtffmpeg音视频
一般的在arm嵌入式平台,大多数板子都要硬解码硬件渲染的框架,使用即可。在x86下比较麻烦了。优化的思路一共有以下几个方面,1.软解码变成硬解码2.将YUV转QImage的操作转移到GPU3.QWidget渲染QImage变成opengGL渲染AVFrame这三点优化来说2与3是优化的效率是非常显著的。1的优化效果往往需要将硬解码的数据copy至CPU再使用2-3的优化。这样一来,解码效率提升了,
- Houdini:Houdini光照与渲染基础_2024-07-16_02-34-24.Tex
chenjj4003
游戏开发houdiniandroidcinema4dblender游戏3dsmax
Houdini:Houdini光照与渲染基础Houdini渲染引擎简介Mantra渲染器概述Mantra是Houdini自带的渲染引擎,它是一个基于物理的渲染器,能够处理复杂的光线追踪和全局光照效果。Mantra的设计理念是灵活性和可扩展性,它支持多种渲染模式,包括CPU渲染和GPU渲染,以及分布式渲染。Mantra的渲染质量高,特别适合于处理大规模的场景和复杂的视觉效果。Mantra渲染器的特点
- 国内支持 Maya 渲染的云渲染平台汇总
渲染101专业云渲染
mayahoudini云计算动画3dsmax
在Maya动画制作过程中,渲染往往是耗时且对硬件要求极高的环节。云渲染平台的出现,为创作者们提供了便捷、高效的解决方案。以下为大家介绍一些国内支持Maya渲染的云渲染平台:渲染101价格优势:该平台在价格方面表现出色,CPU渲染最低仅0.6元/小时,GPU3090起步价为4元/小时。充值优惠力度较大,充值后3090显卡最低能降至约3.5元/小时,4090显卡最低可至5.5元/小时左右,这对于需要大
- 图形渲染(一)——Skia、OpenGL、Mesa 和 Vulkan简介
阳光开朗_大男孩儿
图形渲染OpenGL图形渲染c++
1.Skia——2D图形库Skia是一个2D图形库,它的作用是为开发者提供一个高层次的绘图接口,方便他们进行2D图形渲染(比如绘制文本、形状、图像等)。Skia本身不直接管理GPU或进行底层的渲染工作,而是通过底层图形API(如OpenGL或Vulkan)来实现硬件加速的渲染。-Skia的角色:提供高层的2D渲染API,抽象掉底层的硬件细节。-依赖底层API:Skia本身依赖于图形API(如Ope
- 初识Vulkan渲染管线
超级无敌小小顺利
VulkanVulkan渲染管线GPUPipeline
目前参考《Vulkan规范》和《Vulkan开发实战详解》对渲染管线有了一个初步的认识。现结合中英文的渲染管线图进行笔记整理。中英文的渲染管线图分别如下所示:绘制命令送入设备队列执行后,Vulkan将原始的物体顶点坐标数据、顶点颜色数据最终转化为屏幕中画面。上面中文管线结构图中有两个应用程序入口,左侧为简单示例入口,右侧为使用GPU进行高性能通用计算时的计算管线。1.绘制:命令进入Vulkan图形
- Unity中,每一帧的渲染CPU和GPU都做了些什么
你一身傲骨怎能输
商业化游戏开发技术专栏unity游戏引擎
在Unity中,每一帧的渲染过程涉及到CPU和GPU的协同工作。CPU和GPU各自承担不同的任务,以实现高效的图形渲染。以下是每一帧渲染过程中CPU和GPU的主要工作内容:CPU的工作输入处理:处理用户输入(键盘、鼠标、触摸等)。更新输入状态。游戏逻辑更新:执行游戏脚本(如C#脚本)。更新游戏对象的状态(位置、旋转、缩放等)。处理物理引擎(如碰撞检测和刚体模拟)。动画更新:更新动画状态机。计算骨骼
- 虚幻UE4/UE5程序性能分析及优化
余额多多多
虚幻ue4ue5
谈到ue程序性能优化,不得不提下ue程序运行的几个主要线程:1/GameThread-游戏线程,负责处理游戏逻辑,更新各种状态2/DrawThread-渲染线程,处理场景中模型/灯光的渲染操作,从游戏线程获取渲染信息,将其转化为与平台无关的绘图指令(跨平台)3/RHITThread-解析DrawThread绘图指令,具体是:RHIT调用各平台的API,向GPU发送渲染指令,进行实际的渲染处理(Re
- Unity UI优化总结
Don里个冬
Unity3D技术分享unityunity3dugui
UnityUI优化总结前言最近又再一次回顾总结了一下UnityUI的优化,在此作下笔记,供学习参考。核心四大问题在Unity中UI优化的核心问题就是重绘和批处理之间的平衡。虽然说可以通过一些简单的技巧单方面地减少批次或者减少重绘,但进行过一波优化之后,最终还是要面临批次和重绘的平衡问题的。常见的四大UI优化问题:1、片段着色器利用率过高(或者说GPUfill-rate填充率过高),即每个片段处理的
- FunASR服务器部署(CPU+GPU)
之群害马
服务器eureka运维
自行下载funasr-cpu/gpu和asrmodel-deploy-cpu/gpu压缩包,官方都有cpu版运行:cd/home/user/data/AIModels/FunASR_docker/deploy_resourcessudodockerload-ifunasr-runtime-sdk-cpu-0.4.4_w_models_v0.2.1.tarcdasrmodel-deploy-cpus
- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 360智算中心:万卡GPU集群落地实践
ZVAyIVqt0UFji
360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨360智算中心在万卡GPU集群中的落地实践过程,包括算力基础设施搭建、集群优
- 大规模GPU集群的进阶之路
卢旗
人工智能
大家好,我是卢旗。今天来聊聊GPU。GPU,全称GraphicProcessingUnit,即图形处理器。它的并行处理能力非常强大,能够同时处理多个任务和数据,因此被广泛用于图形渲染、视频处理、深度学习、科学计算等领域。研发团队在负责制定硬件选型策略并设计优化下一代大规模GPU集群的软硬件架构时,我们需要关注GPU技术的最新进展、重点研究问题以及潜在的技术突破。一、GPU在重点研究的问题算力提升与
- 智能算力中心万卡GPU集群架构深度解析
科技互联人生
科技数码人工智能人工智能gpu算力硬件架构
智能算力中心万卡GPU集群架构深度分析 自ChatGPT发布,科技界大模型竞赛如火如荼。数据成新生产要素,算力成新基础能源,大模型成新生产工具,“AI+”转型势不可挡。模型参数量突破万亿,对算力需求升级,超万卡集群成基建竞赛标配。超万卡集群缩短训练时间,加速迭代,助力市场趋势应对。在超万卡集群中,高效稳定地训练大模型面临双重挑战:确保集群算力最大化、网
- 2. 从HuggingFace下载千问模型、数据、微调并运行
ApiChain
gpt大模型语言模型人工智能python
视频链接(1)3.从HuggingFace下载千问模型、数据、微调并运行(上)_哔哩哔哩_bilibili在本课程中,我们将带你下载并本地运行一个大模型,进行模型的微调训练等,视频播放量525、弹幕量0、点赞数4、投硬币枚数2、收藏人数11、转发人数2,视频作者jiangliuer3264,作者简介,相关视频:3.从HuggingFace下载千问模型、数据、微调并运行(下),6.租赁GPU服务器并
- Docker安装分布式vLLM
MasonYyp
docker分布式容器
Docker安装分布式vLLM1介绍vLLM是一个快速且易于使用的LLM推理和服务库,适合用于生产环境。单主机部署会遇到显存不足的问题,因此需要分布式部署。分布式安装方法https://docs.vllm.ai/en/latest/serving/distributed_serving.html2安装方法⚠️注意:前期一定要把docker环境、运行时和GPU安装好。CUDAVersion:12.4
- Pytorch实现mnist手写数字识别
Zn要学习
python
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**我的环境:语言环境:Python3.8编译器:JupyterLab深度学习环境:torch==1.12.1+cu113torchvision==0.13.1+cu113一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimporttorchimporttorch.nnasnnimpo
- 模型GPU->NPU(Ascend)迁移训练简述
終不似少年遊*
深度学习人工智能迁移学习GPUNPU华为云
目录一、迁移训练流程图解二、详细流程步骤1.模型训练与日志记录2.跨平台精度对齐对比3.问题定位与修复4.迭代验证三、关键技术点四、常见问题与解决方案一、迁移训练流程图解通过华为云的modelart进行运行环境选型北京四使用GPU进行模型训练,生成gpulog.json文件,记录损失函数等信息。然后,使用ptdbg_ascend工具进行精度收集,生成dump文件,由于文件过大,上传到obs桶。贵阳
- 什么是重绘?什么是回流?如何减少回流?
Ashy-
前端面试题前端笔记css3
重绘是指当元素样式发生改变,但不影响其布局的情况下,浏览器重新绘制元素的过程。例如修改元素的背景色、字体颜色等回流是指元素布局属性发生改变,需要重新计算元素在页面中的布局位置时,浏览器重新进行布局的过程例如元素的宽度高度位置改变如何减少回流?适用css动画代替JavaScript动画css动画利用GPU加速,在性能方面通常比JavaScript动画更高效。使用css的transform和opaci
- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round