1、alarm
-------------------------------------------
如果不要求很精确的话,用alarm()和signal()就够了
unsigned int alarm(unsigned int seconds)
函数说明: alarm()用来设置信号SIGALRM在经过参数seconds指定的秒数后传送给目前的进程。如果参数seconds为0,则之前设置的闹钟会被取消,并将剩下的时间返回。
返回值: 返回之前闹钟的剩余秒数,如果之前未设闹钟则返回0。
alarm()执行后,进程将继续执行,在后期(alarm以后)的执行过程中将会在seconds秒后收到信号SIGALRM并执行其处理函数。
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
void sigalrm_fn(int sig)
{
printf("alarm!/n");
alarm(2);
return;
}
int main(void)
{
signal(SIGALRM, sigalrm_fn);
alarm(1);
while(1) pause();
}
2、setitimer()
-------------------------------------------
int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue));
setitimer()比alarm功能强大,支持3种类型的定时器:
ITIMER_REAL : 以系统真实的时间来计算,它送出SIGALRM信号。
ITIMER_VIRTUAL : -以该进程在用户态下花费的时间来计算,它送出SIGVTALRM信号。
ITIMER_PROF : 以该进程在用户态下和内核态下所费的时间来计算,它送出SIGPROF信号。
setitimer()第一个参数which指定定时器类型(上面三种之一);第二个参数是结构itimerval的一个实例;第三个参数可不做处理。
setitimer()调用成功返回0,否则返回-1。
下面是关于setitimer调用的一个简单示范,在该例子中,每隔一秒发出一个SIGALRM,每隔0.5秒发出一个SIGVTALRM信号:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
int sec;
void sigroutine(int signo){
switch (signo){
case SIGALRM:
printf("Catch a signal -- SIGALRM /n");
signal(SIGALRM, sigroutine);
break;
case SIGVTALRM:
printf("Catch a signal -- SIGVTALRM /n");
signal(SIGVTALRM, sigroutine);
break;
}
return;
}
int main()
{
struct itimerval value, ovalue, value2; //(1)
sec = 5;
printf("process id is %d/n", getpid());
signal(SIGALRM, sigroutine);
signal(SIGVTALRM, sigroutine);
value.it_value.tv_sec = 1;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 1;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &value, &ovalue); //(2)
value2.it_value.tv_sec = 0;
value2.it_value.tv_usec = 500000;
value2.it_interval.tv_sec = 0;
value2.it_interval.tv_usec = 500000;
setitimer(ITIMER_VIRTUAL, &value2, &ovalue);
for(;;)
;
}
(1)
struct itimerval
struct itimerval {
struct
timevalit_interval;
struct timeval it_value;
};
itimer
val: i --> interval
val --> value
itimerval结构中的it_value是减少的时间,当这个值为0的时候就发出相应的信号了. 然后再将it_value设置为it_interval值.
(2) setitimer()
setitimer()为其所在进程设置一个定时器,如果itimerval.
it_interval不为0(it_interval的两个域都不为0),则该定时器将持续有效(每隔一段时间就会发送一个信号)
注意:Linux信号机制基本上是从Unix系统中继承过来的。早期Unix系统中的信号机制比较简单和原始,后来在实践中暴露出一些问题,因此,把那些建立在早期机制上的信号叫做"不可靠信号",信号值小于SIGRTMIN(SIGRTMIN=32,SIGRTMAX=63)的信号都是不可靠信号。这就是"不可靠信号"的来源。它的主要问题是:进程每次处理信号后,就将对信号的响应设置为默认动作。在某些情况下,将导致对信号的错误处理;因此,用户如果不希望这样的操作,那么就要在信号处理函数结尾再一次调用signal(),重新安装该信号。
linux延时函数(转载)
应用层:
#include
1、unsigned int sleep(unsigned int seconds); 秒级
2、int usleep(useconds_t usec); 微秒级:1/10^-6
补:
以前对于Linux下的延时函数只用过Sleep,不过最近发现还有其他的函数:
延时可以采用如下函数:
unsigned int sleep(unsigned int seconds);
sleep()会使目前程式陷入「
冬眠
」seconds秒,除非收到「
不可抵
」的信号。
如果sleep()没睡饱,它将会返回还需要补眠的时间,否则一般返回零。
void usleep(unsigned long usec);
usleep与sleep()类同,不同之处在於秒的单位为10E-6秒。
int select(0,NULL,NULL,NULL,struct timeval *tv);
可以利用select的实作sleep()的功能,它将不会等待任何事件发生。
int nanosleep(struct timespec *req,struct timespec *rem);
nanosleep会沉睡req所指定的时间,若rem为non-null,而且没睡饱,将会把要补眠的时间放在rem上。
#include
3、int nanosleep(const struct timespec *req, struct timespec *rem);
struct timespec {
time_t tv_sec;
long tv_nsec;
};
// The value of the nanoseconds field must be in the range 0 to 999999999.
#include
#include
void Sleep(int iSec,int iUsec)
{
struct timeval tv;
tv.tv_sec=iSec;
tv.tv_usec=iUsec;
select(0,NULL,NULL,NULL,&tv);
}
iSec 为延时秒数,Usec为延时微秒数.
注:1秒=1000毫秒=1000000微秒=1000000000纳秒=1000000000000皮秒=1000000000000000飞秒
1s=1000ms=1000000us=1000000000ns=1000000000000ps=1000000000000000fs
内核层:
include
1、void ndelay(unsigned long nsecs); 纳秒级:1/10^-10
2、void udelay(unsigned long usecs); 微秒级: 1/10^-6
3、void mdelay(unsigned long msecs); 毫秒级:1/10^-3
***********************************
Linux下如何实现秒以下精确定时与休眠
Linux中提供的休眠函数是sleep和alarm,但是他们仅仅提供以秒为单位的休眠,这中休眠有些进程显然太长了,那么怎样才能使进程以更小的时间分辨率休眠呢?
我知道的方法有2种,下面就做分别介绍。
第一种方法是使用定时器,Linux提供的定时器函数是:
int setitimer(int which, const struct itimerval *value, struct
itimerval *ovalue);
which指定那种定时器。Linux提供3种定时器:
TIMER_REAL: 准确定时器,超时会发出SIGALRM信号;
TIMER_VIRTUAL: 虚拟定时器,只记进程时间,所以会根据进程执行时间而变化,不能实现准确定时,超时发出SIGVTALRM信号;
TIMER_PROF: 梗概计时器,它会根据进程时间和系统时间而变化,不能实现准确定时,超时发出SIGPROF信号;
在进程中应该捕捉所设定时器会发出的信号,因为进程收到定时器超时发出的信号后,默认动作是终止。
value是设置定时器时间,相关结构如下:
struct itimerval {
struct timeval it_interval;
struct timeval it_value;
};
struct timeval {
long tv_sec;
long tv_usec;
};
it_interval指定间隔时间,it_value指定初始定时时间。如果只指定it_value,就是实现一次定时;如果同时指定 it_interval,则超时后,系统会重新初始化it_value为it_interval,实现重复定时;两者都清零,则会清除定时器。
tv_sec提供秒级精度,tv_usec提供微秒级精度,以值大的为先,注意1s = 1000000ms。
ovalue用来保存先前的值,常设为NULL。
如果是以setitimer提供的定时器来休眠,只需阻塞等待定时器信号就可以了。
第二种方法是使用select来提供精确定时和休眠:
int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);
n指监
视的文件描述符范围,通常设为所要select的fd+1,readfds,writefds和exceptfds分别是读,写和异常文件描述符集,timeout为超时时间。
可能用到的关于文件描述符集操作的宏有:
FD_CLR(int fd, fd_set *set); 清除fd
FD_ISSET(int fd, fd_set *set); 测试fd是否设置
FD_SET(int fd, fd_set *set); 设置fd
FD_ZERO(fd_set *set); 清空描述符集
我们此时用不到这些宏,因为我们并不关心文件描述符的状态,我们关心的是select超时。所以我们需要把readfds,writefds和exceptfds都设为NULL,只指定timeout时间就行了。至于n我们可以不关心,所以你可以把它设为任何非负值。实现代码如下:
int msSleep(long ms) {
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = ms;
return select(0, NULL, NULL, NULL, &tv);
}
呵呵,怎么样,是不是很简单?
结语:
setitimer和select都能实现进程的精确休眠,本文分别对他们进行了简单介绍,并给出了一个简单的给予select的实现。我不推荐使用 setitimer,因为一者Linux系统提供的timer有限(每个进程至多能设3个不同类型的timer),再者ssetitimer实现起来没有 select简单。