USB鼠标驱动 usbmouse.c
原文链接:http://www.linuxidc.com/Linux/2012-12/76197p7.htm
drivers/hid/usbhid/usbmouse.c
下面我们分析下USB鼠标驱动,鼠标输入HID类型,其数据传输采用中断URB,鼠标端点类型为IN。我们先看看这个驱动的模块加载部分。static int __init usb_mouse_init(void) { int retval = usb_register(&usb_mouse_driver); if (retval == 0) printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_VERSION ":" DRIVER_DESC "\n"); return retval; }
模块加载部分仍然是调用usb_register注册USB驱动,我们跟踪看看被注册的usb_mouse_driver
static struct usb_driver usb_mouse_driver = { .name = "usbmouse", //驱动名 .probe = usb_mouse_probe, .disconnect = usb_mouse_disconnect, .id_table = usb_mouse_id_table, //支持项 };关于设备支持项我们前面已经讨论过了
static struct usb_device_id usb_mouse_id_table [] = { { USB_INTERFACE_INFO(USB_INTERFACE_CLASS_HID, USB_INTERFACE_SUBCLASS_BOOT, USB_INTERFACE_PROTOCOL_MOUSE) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, usb_mouse_id_table);再细细看看USB_INTERFACE_INFO宏的定义
/** * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces * @cl: bInterfaceClass value * @sc: bInterfaceSubClass value * @pr: bInterfaceProtocol value * * This macro is used to create a struct usb_device_id that matches a * specific class of interfaces. */ #define USB_INTERFACE_INFO(cl, sc, pr) \ .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ .bInterfaceClass = (cl), \ .bInterfaceSubClass = (sc), \ .bInterfaceProtocol = (pr)
根据宏,我们知道,我们设置的支持项包括接口类,接口子类,接口协议三个匹配项。
主要看看usb_driver中定义的probe函数
static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf);//由接口获取usb_dev struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct usb_mouse *mouse; //该驱动私有结构体 struct input_dev *input_dev; //输入结构体 int pipe, maxp; int error = -ENOMEM; interface = intf->cur_altsetting; //获取设置 if (interface->desc.bNumEndpoints != 1) //鼠标端点只有1个 return -ENODEV; endpoint = &interface->endpoint[0].desc; //获取端点描述符 if (!usb_endpoint_is_int_in(endpoint)) //检查该端点是否是中断输入端点 return -ENODEV; pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); //建立中断输入端点 maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); //端点能传输的最大数据包(Mouse为4个) mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL); //分配usb_mouse结构体 input_dev = input_allocate_device(); //分配input设备空间 if (!mouse || !input_dev) goto fail1; mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma); //分配缓冲区 if (!mouse->data) goto fail1; mouse->irq = usb_alloc_urb(0, GFP_KERNEL); //分配urb if (!mouse->irq) goto fail2; mouse->usbdev = dev; //填充mouse的usb_device结构体 mouse->dev = input_dev; //填充mouse的input结构体 if (dev->manufacturer) //复制厂商ID strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name)); if (dev->product) { //复制产品ID if (dev->manufacturer) strlcat(mouse->name, " ", sizeof(mouse->name)); strlcat(mouse->name, dev->product, sizeof(mouse->name)); } if (!strlen(mouse->name)) snprintf(mouse->name, sizeof(mouse->name), "USB HIDBP Mouse %04x:%04x", le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); usb_make_path(dev, mouse->phys, sizeof(mouse->phys)); strlcat(mouse->phys, "/input0", sizeof(mouse->phys)); //获取usb_mouse的设备节点 input_dev->name = mouse->name; //将鼠标名赋给内嵌input结构体 input_dev->phys = mouse->phys; //将鼠标设备节点名赋给内嵌input结构体 usb_to_input_id(dev, &input_dev->id); //将usb_driver的支持项拷贝给input input_dev->dev.parent = &intf->dev; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); //支持按键事件和相对坐标事件 input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); //表明按键值包括左键、中键和右键 input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); //表明相对坐标包括X坐标和Y坐标 input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) | BIT_MASK(BTN_EXTRA); //表明除了左键、右键和中键,还支持其他按键 input_dev->relbit[0] |= BIT_MASK(REL_WHEEL); //表明还支持中键滚轮的滚动值 input_set_drvdata(input_dev, mouse); //将mouse设为input的私有数据 input_dev->open = usb_mouse_open; //input设备的open操作函数 input_dev->close = usb_mouse_close; usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data, (maxp > 8 ? 8 : maxp), usb_mouse_irq, mouse, endpoint->bInterval); //填充urb mouse->irq->transfer_dma = mouse->data_dma; mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; //使用transfer_dma error = input_register_device(mouse->dev); //注册input设备 if (error) goto fail3; usb_set_intfdata(intf, mouse); return 0; fail3: usb_free_urb(mouse->irq); fail2: usb_free_coherent(dev, 8, mouse->data, mouse->data_dma); fail1: input_free_device(input_dev); kfree(mouse); return error; }
在探讨probe实现的功能时,我们先看看urb填充函数usb_fill_int_urb
/** * usb_fill_int_urb - macro to help initialize a interrupt urb * @urb: pointer to the urb to initialize. * @dev: pointer to the struct usb_device for this urb. * @pipe: the endpoint pipe * @transfer_buffer: pointer to the transfer buffer * @buffer_length: length of the transfer buffer * @complete_fn: pointer to the usb_complete_t function * @context: what to set the urb context to. * @interval: what to set the urb interval to, encoded like * the endpoint descriptor's bInterval value. * * Initializes a interrupt urb with the proper information needed to submit * it to a device. * * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic * encoding of the endpoint interval, and express polling intervals in * microframes (eight per millisecond) rather than in frames (one per * millisecond). * * Wireless USB also uses the logarithmic encoding, but specifies it in units of * 128us instead of 125us. For Wireless USB devices, the interval is passed * through to the host controller, rather than being translated into microframe * units. */ static inline void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *transfer_buffer, int buffer_length, usb_complete_t complete_fn, void *context, int interval) { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = buffer_length; urb->complete = complete_fn; urb->context = context; if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) urb->interval = 1 << (interval - 1); else urb->interval = interval; urb->start_frame = -1; }其实probe主要是初始化usb设备和input设备,终极目标是为了完成urb的提交和input设备的注册。由于注册为input设备类型,那么当用户层open打开设备时候,最终会调用input中的open实现打开,我们看看input中open的实现
static int usb_mouse_open(struct input_dev *dev) { struct usb_mouse *mouse = input_get_drvdata(dev); //获取私有数据 mouse->irq->dev = mouse->usbdev; //获取utb指针 if (usb_submit_urb(mouse->irq, GFP_KERNEL)) //提交urb return -EIO; return 0; }当用户层open打开这个USB鼠标后,我们就已经将urb提交给了USB core,那么根据USB数据处理流程知道,当处理完毕后,USB core会通知USB设备驱动程序,这里我们是响应中断服务程序,这就相当于该URB的回调函数。我们在提交urb时候定义了中断服务程序 usb_mouse_irq,我们跟踪看看
static void usb_mouse_irq(struct urb *urb) { struct usb_mouse *mouse = urb->context; signed char *data = mouse->data; struct input_dev *dev = mouse->dev; int status; switch (urb->status) { case 0: /* success */ break; case -ECONNRESET: /* unlink */ case -ENOENT: case -ESHUTDOWN: return; /* -EPIPE: should clear the halt */ default: /* error */ goto resubmit; //数据处理没成功,重新提交urb } input_report_key(dev, BTN_LEFT, data[0] & 0x01); //左键 input_report_key(dev, BTN_RIGHT, data[0] & 0x02); // input_report_key(dev, BTN_MIDDLE, data[0] & 0x04); // input_report_key(dev, BTN_SIDE, data[0] & 0x08); // input_report_key(dev, BTN_EXTRA, data[0] & 0x10); // input_report_rel(dev, REL_X, data[1]); //鼠标的水平位移 input_report_rel(dev, REL_Y, data[2]); //鼠标的垂直位移 input_report_rel(dev, REL_WHEEL, data[3]); //鼠标滚轮的滚动值 input_sync(dev); //同步事件,完成一次上报 resubmit: status = usb_submit_urb (urb, GFP_ATOMIC); //再次提交urb,等待下次响应 if (status) err ("can't resubmit intr, %s-%s/input0, status %d", mouse->usbdev->bus->bus_name, mouse->usbdev->devpath, status); }
根据上面的中断服务程序,我们应该知道,系统是周期性地获取鼠标的事件信息,因此在URB回调函数的末尾再次提交URB请求块,这样又会调用新的回调函数,周而复始。在回调函数中提交URB只能是GFP_ATOMIC优先级,因为URB回调函数运行于中断上下文中禁止导致睡眠的行为。而在提交URB 过程中可能会需要申请内存、保持信号量,这些操作或许会导致USB内核睡眠。
最后我们再看看这个驱动的私有数据mouse的定义struct usb_mouse { char name[128]; //名字 char phys[64]; //设备节点 struct usb_device *usbdev; //内嵌usb_device设备 struct input_dev *dev; //内嵌input_dev设备 struct urb *irq; //urb结构体 signed char *data; //transfer_buffer缓冲区 dma_addr_t data_dma; //transfer _dma缓冲区 };
在上面这个结构体中,每一个成员的作用都应该很清楚了,尤其最后两个的使用区别和作用,前面也已经说过。
如果最终需要测试这个USB鼠标驱动,需要在内核中配置USB支持、对HID接口的支持、对OHCI HCD驱动的支持。另外,将驱动移植到开发板之后,由于采用的是input设备模型,所以还需要开发板带LCD屏才能测试。