Matlab 聚类实现

转自:http://cache.qihoo.com/wenda.php?do=snap&act=fetchHtmlsnap&m=4e30d558b4f3f59e1350ec81c05323c5&surl=http%3A%2F%2Flipsonyoung.blogbus.com%2Flogs%2F33055546.html&kw=MATLAb

MATLAB提供了两种方法进行聚类分析:

1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;

2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:

1、一次聚类

Clusterdata函数可以视为pdistlinkagecluster的综合,一般比较简单。

clusterdata函数:

调用格式:T=clusterdata(X,cutoff)     

                      等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 

2、分步聚类

1)求出变量之间的相似性

pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化

pdist函数:调用格式:Y=pdist(X,’metric’)

 说明:XM*N矩阵,为由M个样本组成,每个样本有N个字段的数据集

        metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离

pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.

2)用linkage函数来产生聚类树

linkage函数:调用格式:Z=linkage(Y,’method’)

说明:Ypdist函数返回的M*(M-1)/2个元素的行向量,

  method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;

                                  ‘average’:未加权平均距离法;’weighted’:加权平均法

                                 ‘centroid’ 质心距离法;      ‘median’:加权质心距离法;

                                 ‘ward’:内平方距离法(最小方差算法)

返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了M个样本以外,对于每次新产生的类,依次用M+1M+2来标识。

为了表示Z矩阵,我们可以用更直观的聚类数来展示,方法为:dendrogram(Z), 产生的聚类数是一个n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。纵轴高度代表距离列。

         另外,还可以设置聚类数最下端的样本数,默认为30,可以根据修改dendrogram(Z,n)参数n来实现,1<n<Mdendrogram(Z,0)则表n=M的情况,显示所有叶节点。

3)用cophenetic函数评价聚类信息

cophenet函数:   调用格式:c=cophenetic(Z,Y)

  说明:利用pdist函数生成的Ylinkage函数生成的Z计算cophenet相关系数。】

cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度,就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性,另外也可以用inconsistent表示量化某个层次的聚类上的节点间的差异性。

4)最后,用cluster进行聚类,返回聚类列。

你可能感兴趣的:(Matlab 聚类实现)