Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6669 | Accepted: 2444 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4 0 1 1 AND 1 2 1 OR 3 2 0 AND 3 0 0 XOR
Sample Output
YES
Hint
Source
不愧是2sat中的经典建图,图样图森破啊
这题虽然很裸,但是很容易错。其他的还好,关键在AND和OR2个操作,容易漏条件。
当op=AND,c=1的时候,显然有a=b=1;很容易建边a->b,b->a。但其实这里还隐藏了一组条件:a'->a,b'->b,为什么呢,因为当a AND b = 1时,很明显a=b=1,那么a和b任意一个为0时肯定是不合法的。那么加上这组条件后,就把a=0和b=0的情况排除了。如果a和b有一个取0,肯定就能推出矛盾。
当op=OR,c = 0的时候同理。
详情请见代码:
#include <iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; const int N = 2005; const int M = 1000001; struct edge { int to,next,c; }g[M]; int head[N]; int scc[N]; int vis[N]; int stack1[N]; int stack2[N]; int n,m,num; bool flag; void init() { memset(head,-1,sizeof(head)); memset(vis,0,sizeof(vis)); memset(scc,0,sizeof(scc)); stack1[0] = stack2[0] = num = 0; flag = true; } void build(int s,int e) { g[num].to = e; g[num].next = head[s]; head[s] = num ++; } void dfs(int cur,int &sig,int &cnt) { if(!flag) return; vis[cur] = ++sig; stack1[++stack1[0]] = cur; stack2[++stack2[0]] = cur; for(int i = head[cur];~i;i = g[i].next) { if(!vis[g[i].to]) dfs(g[i].to,sig,cnt); else { if(!scc[g[i].to]) { while(vis[stack2[stack2[0]]] > vis[g[i].to]) stack2[0] --; } } } if(stack2[stack2[0]] == cur) { stack2[0] --; ++cnt; do { scc[stack1[stack1[0]]] = cnt; int tmp = stack1[stack1[0]]; if((tmp >= n && scc[tmp - n] == cnt) || (tmp < n && scc[tmp + n] == cnt)) { flag = false; return; } }while(stack1[stack1[0] --] != cur); } } void Gabow() { int i,sig,cnt; sig = cnt = 0; for(i = 0;i < n + n && flag;i ++) if(!vis[i]) dfs(i,sig,cnt); } int main() { int i,j; int a,b,c; char op[8]; while(~scanf("%d%d",&n,&m)) { init(); for(i = 1;i <= m;i ++) { scanf("%d%d%d%s",&a,&b,&c,op); switch(op[0]) { case 'A':if(c) { build(a + n,b + n);//0~n-1表示0,n~2n-1表示1 build(b + n,a + n); build(a,a + n);//a!=0 build(b,b + n);//b!=0 } else { build(a + n,b); build(b + n,a); } break; case 'O':if(c) { build(a,b + n); build(b,a + n); } else { build(a,b); build(b,a); build(a + n,a);//a!=1 build(b + n,b);//b!=1 } break; case 'X':if(c) { build(a,b + n); build(a + n,b); build(b,a + n); build(b + n,a); } else { build(a,b); build(b,a); build(a + n,b + n); build(b + n,a + n); } } } Gabow(); if(flag) puts("YES"); else puts("NO"); } return 0; } //1080K 47MS