poj3580SuperMemo(splay丰富的操作)

SuperMemo
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 6668   Accepted: 2226
Case Time Limit: 2000MS

Description

Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1A2, ... An}. Then the host performs a series of operations and queries on the sequence which consists:

  1. ADD x y D: Add D to each number in sub-sequence {Ax ... Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5, 5}
  2. REVERSE x y: reverse the sub-sequence {Ax ... Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4, 3, 2, 5}
  3. REVOLVE x y T: rotate sub-sequence {Ax ... AyT times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
  4. INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
  5. DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
  6. MIN x y: query the participant what is the minimum number in sub-sequence {Ax ... Ay}. For example, the correct answer to "MIN 2 4" on {1, 2, 3, 4, 5} is 2

To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct answer to each query in order to assist Jackson whenever he calls.

Input

The first line contains (≤ 100000).

The following n lines describe the sequence.

Then follows M (≤ 100000), the numbers of operations and queries.

The following M lines describe the operations and queries.

Output

For each "MIN" query, output the correct answer.

Sample Input

5
1 
2 
3 
4 
5
2
ADD 2 4 1
MIN 4 5

Sample Output

5

Source

POJ Founder Monthly Contest – 2008.04.13, Yao Jinyu

先是码了一上午,然后调了一下午+一晚上,总算是过掉了。内牛满面啊。。。

splay也算入门了吧。splay果然强大,各种神操作都不在话下。

题目大意:给一个序列,6种操作:

1、ADD a b c:将区间[a,b]都加c;

2、RESERVE a b:将区间[a,b]翻转;

3、REVOLVE a b c:将区间[a,b]循环右移c位;(题目描述可能不是很清楚,不过yy一下也是可以的,注意c可能为负数,即可能要求左移)

4、DEL a:删除第a个位置的数;

5、INSERT a b:在第a个数后面加上数b;

6、MIN a b:询问区间[a,b]的最小值;

好丰富的操作啊啊啊

题目分析:所有操作逐一分析:

1、很常规的操作,lazy标记即可

2、很常规的操作,lazy标记即可

3、循环右移操作,先将右移长度对区间长度取模,得到实际的右移长度c,将区间分成2部分:[a,a+c - 1],[a + c,b],右移的实际效果其实就是将前面2个区间交换,这实际就是应该简单的剪切,粘贴操作,将前面一个区间先剪切下来,在粘贴到后一个区间的后面即可。

其实还有一个更简单的做法,REVOLVE[a,b] = REVERSE[a,b] + REVERSE[a,a + c - 1] + REVERSE[a + c,b],很神奇。。。

4、删除操作,也不难,就是将要删除的节点splay到树根,再将要删除的节点的下一个节点splay到根的右子树,删除树根,合并左右子树即可。

5、插入操作,将a节点splay到树根,a+1节点splay到根的右子树,再把新建的节点插到右子树的左子树上。

6、查询操作,不解释。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100005;
const int INF = 0x7fffffff;
int m,n;
int next[N + N];
struct node
{
    int l,r,f,mn,add,lazy,key,size;
}tree[N + N];
int Min(int a,int b)
{
    return a > b?b:a;
}

void show(int rt)
{
	if(rt)
	{
		show(tree[rt].l);
		printf("结点%2d:左儿子 %2d 右儿子 %2d 父结点 %2d key = %2d size = %2d ,mn = %2d\n",rt,tree[rt].l,tree[rt].r,tree[rt].f,tree[rt].key,tree[rt].size,tree[rt].mn);
		show(tree[rt].r);
	}
}
void debug(int rt)
{
	printf("root: %d\n",rt);
	show(rt);
}
void init()
{
    tree[0].size = tree[0].lazy = tree[0].add = 0;
    tree[0].key = tree[0].mn = INF;
    for(int i = 0;i < N + N;i ++)
        next[i] = i + 1;
}

int newnode()
{
    int p = next[0];
    next[0] = next[p];
    tree[p].lazy = tree[p].add = 0;
    tree[p].l = tree[p].r = tree[p].f = tree[p].mn = 0;
    tree[p].size = 1;
    return p;
}

void delnode(int p)
{
    next[p] = next[0];
    next[0] = p;
}

void pushup(int rt)
{
    if(rt)
    {
        tree[rt].size = tree[tree[rt].l].size + tree[tree[rt].r].size + 1;
        tree[rt].mn = Min(tree[rt].key,Min(tree[tree[rt].l].mn,tree[tree[rt].r].mn));
    }
}

void pushdown(int rt)
{
    if(!rt)
        return;
    int ls = tree[rt].l;
    int rs = tree[rt].r;
    if(tree[rt].add)
    {
        if(ls)
        {
			tree[ls].add += tree[rt].add;
			tree[ls].key += tree[rt].add;
			tree[ls].mn += tree[rt].add;
		}
        if(rs)
        {
			tree[rs].add += tree[rt].add;
			tree[rs].mn += tree[rt].add;
			tree[rs].key += tree[rt].add;
		}
        tree[rt].add = 0;
    }
    if(tree[rt].lazy)
    {
        swap(tree[rt].l,tree[rt].r);
        if(ls)
            tree[ls].lazy ^= 1;
        if(rs)
            tree[rs].lazy ^= 1;
        tree[rt].lazy = 0;
    }
}

void zig(int x)
{
    int p = tree[x].f;
    pushdown(p);
    pushdown(x);
    tree[p].l = tree[x].r;
    if(tree[x].r)
        tree[tree[x].r].f = p;
    pushup(p);
    tree[x].r = p;
    tree[x].f = tree[p].f;
    pushup(x);
    tree[p].f = x;
    if(tree[x].f == 0)
        return;
    if(tree[tree[x].f].l == tree[x].r)
        tree[tree[x].f].l = x;
    else
        tree[tree[x].f].r = x;
}

void zag(int x)
{
    int p = tree[x].f;
    pushdown(p);
    pushdown(x);
    tree[p].r = tree[x].l;
    if(tree[x].l)
        tree[tree[x].l].f = p;
    pushup(p);
    tree[x].l = p;
    tree[x].f = tree[p].f;
    pushup(x);
    tree[p].f = x;
    if(tree[p].f == 0)
        return;
    if(tree[tree[x].f].l == tree[x].l)
        tree[tree[x].f].l = x;
    else
        tree[tree[x].f].r = x;
}

int splay(int x,int goal)
{
    pushdown(x);
    int p;//parent
    while(tree[x].f != goal)
    {
        p = tree[x].f;
        int g = tree[p].f;//grandparent
        if(g == goal)
        {
            if(tree[p].l == x)
                zig(x);
            if(tree[p].r == x)
                zag(x);
        }
        else
        {
            if(tree[g].l == p && tree[p].l == x)//ll
            {
                zig(p);
                zig(x);
            }
            else if(tree[g].l == p && tree[p].r == x)//lr
            {
                zag(x);
                zig(x);
            }
            else if(tree[g].r == p && tree[p].r == x)//rr
            {
                zag(p);
                zag(x);
            }
            else if(tree[g].r == p && tree[p].l == x)//rl
            {
                zig(x);
                zag(x);
            }
        }
    }
    pushup(x);
    return x;
}

int build(int l,int r,int fa)
{
    if(l > r)
        return 0;
    int mid = (l + r)>>1;
    int p = newnode();
    tree[p].l = build(l,mid - 1,p);
    scanf("%d",&tree[p].key);
    tree[p].mn = tree[p].key;
    tree[p].f = fa;
    tree[p].r = build(mid + 1,r,p);
    pushup(p);
    return p;
}

void prepare(int &root)
{
    root = newnode();//涉及到区间操作,所以左右各加1个点
    tree[root].mn = INF;
    tree[root].key = INF;
    tree[root].r = newnode();
    tree[tree[root].r].mn = INF;
    tree[tree[root].r].key = INF;
    tree[tree[root].r].f = root;
    tree[tree[root].r].l = build(1,n,tree[root].r);
    pushup(tree[root].r);
    pushup(root);
}

int find(int pos,int rt)
{
    if(!rt)
        return 0;
    pushdown(rt);
    if(tree[tree[rt].l].size == pos - 1)
        return rt;
    if(tree[tree[rt].l].size >= pos)
        return find(pos,tree[rt].l);
    else
        return find(pos - tree[tree[rt].l].size - 1,tree[rt].r);
}

int getMax(int rt)
{
    pushdown(rt);
    while(tree[rt].r)
    {
        rt = tree[rt].r;
        pushdown(rt);
    }
    return rt;
}

int getMin(int rt)
{
    pushdown(rt);
    while(tree[rt].l)
    {
        rt = tree[rt].l;
        pushdown(rt);
    }
    return rt;
}

void Rotate_interval(int a,int b,int &root)
{
    int l = find(a,root);
    int r = find(b + 2,root);
    root = splay(l,0);
    tree[root].r = splay(r,root);
    pushup(tree[root].r);
    pushup(root);
}

void Add(int a,int b,int c,int &root)
{
    Rotate_interval(a,b,root);
    tree[tree[tree[root].r].l].add += c;
	tree[tree[tree[root].r].l].mn += c;
	tree[tree[tree[root].r].l].key += c;
}

void Reverse(int a,int b,int &root)
{
    Rotate_interval(a,b,root);
    tree[tree[tree[root].r].l].lazy ^= 1;
}

void Revolve(int a,int b,int c,int &root)//右移操作
{
    Rotate_interval(a,b,root);
    int len = b - a + 1;
    c = (c % len + len) % len;
    if(c == 0)
        return;
    c = len - c;
//    Reverse(a,a + c - 1,root);右移操作其实等价于这3个翻转操作
//    Reverse(a + c,b,root);如果看得出来就很简单了
//    Reverse(a,b,root);如果看不出来就用下面的笨方法:
    int p = find(c + 1,tree[tree[root].r].l);//tree[tree[root].r].l是操作区间的root
    tree[tree[root].r].l = splay(p,tree[root].r);//将操作区间中的第c+1个数splay到区间的root
    int tmp = tree[tree[tree[root].r].l].l;//那么这个区间的root的左子树就是要移动的区间
    tree[tree[tree[root].r].l].l = 0;//那么就是应该剪切粘贴的过程,代码看不清楚,在纸上画画就ok
    int nt = getMax(tree[tree[root].r].l);
    tree[tree[root].r].l = splay(nt,tree[root].r);
    tree[tree[tree[root].r].l].r = tmp;
    tree[tmp].f = tree[tree[root].r].l;
    pushup(tree[tree[root].r].l);
    pushup(tree[root].r);
    pushup(root);
}

void Insert(int a,int b,int &root)
{
    int p = newnode();
    tree[p].mn = b;
    tree[p].key = b;
    int x = find(a + 1,root);
    root = splay(x,0);
    x = find(a + 2,root);
    tree[root].r = splay(x,root);
    tree[p].f = tree[root].r;
    tree[tree[root].r].l = p;
    root = splay(p,0);
    pushup(root);
}

void Del(int a,int &root)
{
    int x = find(a + 1,root);
    root = splay(x,0);
    x = find(a + 2,root);
    tree[root].r = splay(x,root);
    tree[tree[root].l].f = tree[root].r;
    tree[tree[root].r].l = tree[root].l;
    x = root;
    root = tree[x].r;
    delnode(x);
    tree[root].f = 0;
    pushup(root);
}

void Min_query(int a,int b,int &root)
{
    Rotate_interval(a,b,root);
    printf("%d\n",tree[tree[tree[root].r].l].mn);
}

int main()
{
    int root;
    int a,b,c;
    char op[20];
    while(scanf("%d",&n) != EOF)
    {
        init();
        prepare(root);
		scanf("%d",&m);
        while(m --)
        {
            scanf("%s",op);
            scanf("%d",&a);
            switch(*op)
            {
            case 'A':
                scanf("%d%d",&b,&c);
                Add(a,b,c,root);break;
            case 'R':
                if(op[3] == 'E')
                {
                    scanf("%d",&b);
                    Reverse(a,b,root);
                }
                else
                {
                    scanf("%d%d",&b,&c);
                    Revolve(a,b,c,root);
                }
                break;
            case 'I':
                scanf("%d",&b);
                Insert(a,b,root);
                break;
            case 'D':Del(a,root);break;
            case 'M':
                scanf("%d",&b);
                Min_query(a,b,root);
            }
        }
    }
    return 0;
}
//4612K	750MS
/*
5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5
5 1 2 3 4 5
14
MIN 1 1
MIN 2 2
MIN 3 3
MIN 4 4
MIN 5 5
REVOLVE 2 5 2
REVERSE 2 3
REVERSE 4 5
REVERSE 2 5
MIN 1 1
MIN 2 2
MIN 3 3
MIN 4 4
MIN 5 5

8 1 2 3 4 5 6 7 8
30
MIN 2 7
ADD 5 6 -7
MIN 2 7
REVERSE 3 8
MIN 6 8
REVOLVE 1 6 -9
MIN 1 3
DEL 3
MIN 2 4
INSERT 7 5
MIN 5 8
REVOLVE 2 8 11
MIN 6 8
MIN 1 2
ADD 1 2 -5
MIN 1 2
*/



你可能感兴趣的:(数据结构,splay)