Problem C
Add Again
Input: Standard Input
Output: Standard Output
Summation of sequence of integers is always a common problem in Computer Science. Rather than computing blindly, some intelligent techniques make the task simpler. Here you have to find the summation of a sequence of integers. The sequence is an interesting one and it is the all possible permutations of a given set of digits. For example, if the digits are <1 2 3>, then six possible permutations are <123>,< 132>, <213>, <231>, <312>, <321> and the sum of them is 1332.
Each input set will start with a positive integerN (1≤N≤12). The next line will contain N decimal digits. Input will be terminated by N=0. There will be at most 20000 test set.
For each test set, there should be a one line output containing the summation. The value will fit in 64-bit unsigned integer.
3 1 2 3 3 1 1 2 0 |
1332 444
|
Problemsetter: Md. Kamruzzaman
Special Thanks: Shahriar Manzoor
解题报告:假设不去重,那么n个数一共有n!种组合。以第一位为例,n个数各出现(n-1)!次,那么第一位的和就是(n-1)!*sum。再去重,每个数出现p次,结果就除以p!。最后统计成一个数字即可。代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; LL factorial[20]; void init() { factorial[0]=1; for(int i=1;i<=12;i++) factorial[i]=factorial[i-1]*i; } int d[10]; int main() { init(); int n; while(~scanf("%d",&n) && n) { memset(d,0,sizeof(d)); LL ans = factorial[n-1]; int sum = 0; for(int i=0;i<n;i++) { int tmp; scanf("%d",&tmp); d[tmp]++; sum+=tmp; } ans*=sum; for(int i=0;i<10;i++) ans/=factorial[d[i]]; LL res=0; for(int i=0;i<n;i++) res = res*10+ans; printf("%lld\n", res); } }