传送门:【COGS】1325 [ZJOI2010] 网络扩容
题目分析:首先按要求添加边,但是费用为0(这是原图就存在的),求一遍最大流,然后用再添加同样的边一遍但是容量为无穷大,费用为w(这是添加边的费用),求一遍费用流即可。
代码如下:
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std ; typedef long long LL ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define REV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define CLR( a , x ) memset ( a , x , sizeof a ) #define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 1005 ; const int MAXM = 5005 ; const int MAXE = 100005 ; const int INF = 0x3f3f3f3f ; struct Edge { int v , c , w , n ; Edge () {} Edge ( int v , int c , int w , int n ) : v ( v ) , c ( c ) , w ( w ) , n ( n ) {} } E[MAXE] ; int H[MAXN] , cntE ; int d[MAXN] , cur[MAXN] , cap[MAXN] , cnt[MAXN] , pre[MAXN] ; int Q[MAXN] , head , tail ; bool vis[MAXN] ; int s , t , nv ; int flow ; int cost ; int n , m , k ; int uu[MAXM] , vv[MAXM] , cc[MAXM] , ww[MAXM] ; void clear () { cntE = 0 ; CLR ( H , -1 ) ; } void addedge ( int u , int v , int c , int w ) { E[cntE] = Edge ( v , c , w , H[u] ) ; H[u] = cntE ++ ; E[cntE] = Edge ( u , 0 , -w , H[v] ) ; H[v] = cntE ++ ; } void rev_bfs () { CLR ( d , -1 ) ; CLR ( cnt , 0 ) ; head = tail = 0 ; d[t] = 0 ; Q[tail ++] = t ; cnt[0] = 1 ; while ( head != tail ) { int u = Q[head ++] ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( ~d[v] ) continue ; d[v] = d[u] + 1 ; cnt[d[v]] ++ ; Q[tail ++] = v ; } } } int ISAP () { CPY ( cur , H ) ; rev_bfs () ; flow = 0 ; int u = pre[s] = s , i , f , pos , minv ; while ( d[s] < nv ) { if ( u == t ) { f = INF ; for ( i = s ; i != t ; i = E[cur[i]].v ) if ( f > E[cur[i]].c ) { f = E[cur[i]].c ; pos = i ; } for ( i = s ; i != t ; i = E[cur[i]].v ) { E[cur[i]].c -= f ; E[cur[i] ^ 1].c += f ; } u = pos ; flow += f ; } for ( i = cur[u] ; ~i ; i = E[i].n ) if ( E[i].c && d[u] == d[E[i].v] + 1 ) break ; if ( ~i ) { cur[u] = i ; pre[E[i].v] = u ; u = E[i].v ; } else { if ( 0 == cnt[d[u]] ) break ; for ( minv = nv , i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( E[i].c && minv > d[v] ) { minv = d[v] ; cur[u] = i ; } } d[u] = minv + 1 ; cnt[d[u]] ++ ; u = pre[u] ; } } return flow ; } int spfa () { CLR ( d , INF ) ; CLR ( vis , 0 ) ; head = tail = 0 ; Q[tail ++] = s ; cap[s] = INF ; cur[s] = -1 ; d[s] = 0 ; while ( head != tail ) { int u = Q[head ++] ; if ( head == MAXN ) head = 0 ; vis[u] = 0 ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v , c = E[i].c , w = E[i].w ; if ( c && d[v] > d[u] + w ) { d[v] = d[u] + w ; cap[v] = min ( cap[u] , c ) ; cur[v] = i ; if ( !vis[v] ) { vis[v] = 1 ; Q[tail ++] = v ; if ( tail == MAXN ) tail = 0 ; } } } } if ( d[t] == INF ) return 0 ; cost += d[t] * cap[t] ; flow += cap[t] ; for ( int i = cur[t] ; ~i ; i = cur[E[i ^ 1].v] ) { E[i].c -= cap[t] ; E[i ^ 1].c += cap[t] ; } return 1 ; } int mcmf () { flow = cost = 0 ; while ( spfa () ) ; return cost ; } void solve () { int u , v , c , w ; clear () ; scanf ( "%d%d%d" , &n , &m , &k ) ; s = 1 ; t = n ; nv = t + 1 ; REP ( i , 0 , m ) { scanf ( "%d%d%d%d" , &uu[i] , &vv[i] , &cc[i] , &ww[i] ) ; addedge ( uu[i] , vv[i] , cc[i] , 0 ) ; } ISAP () ; printf ( "%d " , flow ) ; s = 0 ; addedge ( s , 1 , k , 0 ) ; REP ( i , 0 , m ) addedge ( uu[i] , vv[i] , INF , ww[i] ) ; mcmf () ; printf ( "%d\n" , cost ) ; } int main () { freopen ( "networkzj2010.in" , "r" , stdin ) ; freopen ( "networkzj2010.out" , "w" , stdout ) ; solve () ; return 0 ; }