题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686
和POJ3422一样
删掉K把汇点与源点的容量改为2(因为有两个方向的选择)即可
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <algorithm> const int maxn = 20000; const int maxm = 800000; const int inf = 1e8; const int INF = 0x3f3f3f3f; #define MIN INT_MIN #define MAX 1e6 #define LL long long #define init(a) memset(a,0,sizeof(a)) #define FOR(i,a,b) for(int i = a;i<b;i++) #define max(a,b) (a>b)?(a):(b) #define min(a,b) (a>b)?(b):(a) using namespace std; struct node { int u,v,w,cap,next; } edge[maxm]; int pre[maxn],dis[maxn],head[maxn],cnt; bool vis[maxn]; int n; void add(int u,int v,int c,int cap) { edge[cnt].u=u; edge[cnt].v=v; edge[cnt].w=c; edge[cnt].cap=cap; edge[cnt].next=head[u]; head[u]=cnt++; edge[cnt].u=v; edge[cnt].v=u; edge[cnt].w=-c; edge[cnt].cap=0; edge[cnt].next=head[v]; head[v]=cnt++; } int spfa(int s,int t) { queue<int>q; while(q.empty()==false) q.pop(); q.push(s); memset(vis,0,sizeof(vis)); memset(pre,-1,sizeof(pre)); FOR(i,s,t+1) dis[i] = -1;//求最长路dis数组初始化为-1 dis[s]=0; vis[s] = 1; while(!q.empty()) { int u=q.front(); q.pop(); vis[u] = 0; for(int i=head[u]; i!=-1; i=edge[i].next) { if(edge[i].cap && dis[edge[i].v] < (dis[u]+edge[i].w))//求最长路 { dis[edge[i].v] = dis[u]+edge[i].w; pre[edge[i].v] = i; if(!vis[edge[i].v]) { vis[edge[i].v]=1; q.push(edge[i].v); } } } } if(dis[t] != -1)//------------------忘改了。。 return 1; else return 0; } int MinCostMaxFlow(int s,int t) { int flow=0,cost=0; while(spfa(s,t)) { int df = inf; for(int i = pre[t]; i!=-1; i=pre[edge[i].u]) { if(edge[i].cap<df) df = edge[i].cap; } flow += df; for(int i=pre[t]; i!=-1; i=pre[edge[i].u]) { edge[i].cap -= df; edge[i^1].cap += df; } //printf("df = %d\n",df); cost += dis[t] * df; } return cost; } void initt() { cnt=0; memset(head,-1,sizeof(head)); } int ma; int main() { int s,t,k; while(~scanf("%d",&n)) { initt(); s = 0; t=2*n*n+1; add(s,1,0,2); int num = n*n; FOR(i,1,n+1) { FOR(j,1,n+1) { scanf("%d",&ma); add((i-1)*n+j,(i-1)*n+j+num,ma,1); add((i-1)*n+j,(i-1)*n+j+num,0,1);//本点与拆点连线,费用0,容量为无穷 if(i<=n-1)//向下建图 { add((i-1)*n+j+num,i*n+j,0,1); } if(j<=n-1)//向右建图 { add((i-1)*n+j+num,(i-1)*n+j+1,0,1); } } } add(t-1,t,0,2); int ans = MinCostMaxFlow(s,t); printf("%d\n",ans); } return 0; }